
OCR LEVEL 2
CAMBRIDGE TECHNICAL
CERTIFICATE/DIPLOMA IN

ITIT

DEVELOPING PROGRAMMING
SOLUTIONS
J/505/5214

LEVEL 2 UNIT 27

GUIDED LEARNING HOURS: 60

UNIT CREDIT VALUE: 10

TECHNICALS
Cambridge

2www.ocr.org.uk

DEVELOPING PROGRAMMING

SOLUTIONS
J/505/5214

LEVEL 2

AIM AND PURPOSE OF THE UNIT

This unit will enable learners to create programming solutions
in an appropriate development environment, including
testing and debugging the code.

On completing this unit learners will know about language
options together with the syntax, structure and layout of a
programming language. Learners will create a programming
solution using an appropriate development environment and
complete the processes of testing and debugging the code
that has been produced.

3

Developing Programming Solutions Level 2 Unit 27

ASSESSMENT AND GRADING CRITERIA

Learning Outcome (LO)

The learner will:

Pass

The assessment criteria are
the pass requirements for
this unit.

The learner can:

Merit

To achieve a merit the
evidence must show that, in
addition to the pass criteria,
the learner is able to:

Distinction

To achieve a distinction the
evidence must show that,
in addition to the pass and
merit criteria, the learner is
able to:

1 Understand
appropriate
programming
languages for a
proposed solution

P1 explain the choice
of programming
languages for a
proposed solution

M1 explain how the chosen
programming language
will be suitable for
future expansion or
enhancement

2 Be able to produce
programming code for
a software solution

P2 outline the structure
to be used for
programming code
to meet a proposed
solution.

P3 produce programming
code for a given
specifi cation using
appropriate syntax

M2 format the code using
appropriate layout and
indentation

D1 annotate the code with
appropriate comments

3 Be able to debug
programming code for
a software solution

P4 use debugging
techniques to fi nd
and correct errors in
programming code

D2 enhance the code to
improve effi ciency and
quality of solution

4 Be able to test a
software solution

P5 test the functionality of
the software solution

M3 implement a change to
the software solution
based on identifi ed
refi nements

4www.ocr.org.uk

TEACHING CONTENT

The unit content describes what has to be taught to ensure that learners are able to access the highest grade.

Anything which follows an i.e. details what must be taught as part of that area of content.

Anything which follows an e.g. is illustrative, it should be noted that where e.g. is used, learners must know and be able to apply
relevant examples to their work though these do not need to be the same ones specifi ed in the unit content.

LO1 Understand appropriate programming languages

for a proposed solution

• Uses of software and fi rmware e.g. high level coding
solutions, interface between software and fi rmware,
fi rmware development

• Types of programming language i.e. object oriented,
procedural, event driven

• Programming languages
 - High Level (e.g. VB, C++, JavaScript, HTML, XML, CSS,

asp.net, PHP, Python, Perl, Ruby)
 - Low level i.e. assembler (dedicated to specifi c 8/16/32

bit microprocessors and microcontrollers) and key
elements e.g. the processes of binary calculations, stack
management and interrupt handlers

• Selection of a programming language suitable for a
specifi c coding solution e.g. consideration of target
platform, intended use, compatibility, security needs, user
needs, maintenance and support

LO2 Be able to produce programming code for a

software solution

• Interpreting programming requirements from a software
specifi cation e.g. development language and platform,
data fl ow and management, Graphical User Interface (GUI),
drivers, libraries, interfaces, algorithms, structure

• Software design principles e.g. identifying components
and sub components of the overall system

• Structure of programming code and terminology (e.g.
main body, sub routines, kernel, libraries, device drivers,
defi nitions, variables)
 - Indentation and layout of code (e.g. indentation level,

use of white space, blank lines)
 - Use of comments to explain processes

• Syntax of programming languages (e.g. uppercase and
lowercase characters, naming conventions, fi le naming
and extensions)

• Development environment, folder structure and fi le
naming e.g. single user and multi user environments, what
fi les and folders are used and how they are managed, what
fi le naming conventions are used for source code and
executables

• The use of version control when working on software
development e.g. numerical systems for successive
versions, beta releases, date identifi ers

LO3 Be able to debug programming code for a

software solution

• Debugging tools and techniques
 - Using a debugger software application e.g. with

execution control, disassembly, memory and registers
windows

 - Using an emulator e.g. for microcontrollers, android
devices

 - Using trace statements e.g. breakpoints, pause/stop/
restart, single stepping of instructions

 - Use of monitoring techniques e.g. print instructions
 - Analysis and interpretation of error messages, log fi les,

dump fi les and stack content

• Applying corrections, improvements and enhancements
to optimise code effi ciency e.g. diff erent ways of achieving
the same results using alternative structure, design
approaches, programming routines

LO4 Be able to test a software solution

• Functionality testing i.e. to ensure the developed solution
meets the specifi cation and/or client requirements

• Using a test plan i.e. with details of what is being tested
and the success criteria

• Recording results of testing i.e. pass/fail against the success
criteria, use of appropriate comments

• Identifi cation and implementation of improvements and
changes e.g. code changes, re-testing and results

• Documenting and storing the test processes and results

5

Developing Programming Solutions Level 2 Unit 27

DELIVERY GUIDANCE

This unit will develop the practical skills involved in
developing programming solutions. Wherever possible
the unit should be delivered eff ectively within a workshop
environment, giving learners a series of exercises, tasks and
practical activities. Learners may have completed other units
and established some basic knowledge that contributes to
this unit, such as the types and features of programming
languages. This will need to be developed further so that
learners can use their knowledge and combine this with their
understanding of a coding requirement in order to make
informed choices.

Understand appropriate programming languages for a

proposed solution

To introduce this unit the tutor could use examples of IT
equipment and explain what software and fi rmware is used
on them. Devices such as printers, routers, smartphones,
tablets, robots, industrial automation controllers, games
consoles and PCs will provide a range of diff erent platforms.
This will establish an understanding of the diff erence between
software and fi rmware together with examples where
software applications interface with embedded fi rmware.

The tutor could provide information hand outs on a range of
programming languages, identifying the diff erent types. Their
suitability for use on diff erent platforms should be included
with workshops and case studies for how diff erent languages
have been used to produce solutions. A series of diff erent
categories would be encouraged such as:

• Web technologies and solutions including HTML, XML,
CSS, Javascript, asp.net, PHP and Python

• PC based IT systems solutions using VB, C++, Python

• Industrial control, microcontrollers and robotics using VB,
C++, Python, PERL, Ruby and assembler languages.

• Applications for solutions that are based on platforms such
as Raspberry Pi and Arduino

• Apps for tablets and smartphones

As the basis for further work in this and other units, it will be
important to identify the features and capability of diff erent
languages to support the development of solutions. Where
appropriate, identify examples of SDK (software development
kits) for specifi c purposes.

The tutor should explain the purpose and use of a software
requirements specifi cation. Examples of simple and more
complex specifi cations could be used as case studies. A group
activity about a particular requirements specifi cation will
prompt discussion about what programming languages may
be suitable. A quiz (whether short answer or multiple choice)
could be used to reinforce the learning.

At this point, learners should be encouraged to research
developments in programmes that have been made or are
possible within individual languages.

Be able to produce programming code for a software

solution

Following on from Learning Outcome 1, the concept and
content of a software requirements specifi cation may have
been introduced. This should now be developed further to
identify how a solution will be designed and implemented.
Alongside this, the basic concepts of software design should
be covered which are then put into an applied context for
a given software specifi cation. One approach would be to
begin with simple and short tasks to perform calculations and
display the results on the screen. This could then be extended
by adding further options and improving the design and
layout of the user interface. The use of platforms with audio
capabilities will allow the generation of musical tunes and/
or audio acknowledgement of instructions and input. At
this early stage, the practical activities would be designed to
develop knowledge and skills in the use of syntax, structure,
indentation and commenting of code.

A series of exercises and projects should become
progressively larger so that a wider range of commands and
programming structure is used. Each mini project would be
introduced with a software requirements specifi cation to
reinforce the process of software development. Reference
materials in the form of sample code should be used that
illustrates good layout. Annotated versions could highlight
the use of indentation, white space, blank lines and author’s
comments. Again it is suggested that these examples cover a
range of diff erent programming languages.

Depending on what development environments are available
and being used, conventions for managing fi les and folders
should be explained within a workshop activity. Supporting
hand outs could also be used to explain naming conventions,
fi le extensions and version control.

6www.ocr.org.uk

Be able to debug programming code for a software

solution

This Learning Outcome could be delivered alongside
Learning Outcome 2 such that debugging techniques
are used with any or all of the programming exercises.
Depending on the platforms and languages used, the tools
and techniques of debugging should be appropriate to the
development environment. For example, if using a PC based
visual environment, built in debuggers and tools should be
explored in a practical context. Where emulators are available,
these may also be used with break points and single step
instructions to locate programming errors and interface
problems. Debugging techniques may also involve the use
of previews and test environments with trace statements
and monitoring tools. Where error messages and log/dump
fi les are created, these should be explored in detail so that
their practical use is demonstrated. One suggestion here is
to have a piece of programming code with known errors on a
particular platform. The task would then be to debug the code
provided by using a combination of the error messages, log
fi les, memory and register windows as appropriate. A series of
these examples could be used across diff erent environments
and platforms to develop the debugging skills required. In
general, the delivery should be in a workshop with a range
of practical activities that is also supported by hand outs,
demonstrations and verbal explanation.

Areas for enhancements to the programming code may be
identifi ed during this stage of the development process and
may be identifi ed using the knowledge gained from their
research in Learning Outcome 1. Examples would be simpler
coding routines, improved structure or stability to achieve the
same objectives, hence improving the effi ciency. As above,
one suggestion here is to provide an example of a coding
solution that is deliberately ineffi cient. Learners would then
need to debug the code and develop an improved solution
based on the analysis of information gathered.

Be able to test a software solution

This Learning Outcome could be delivered in conjunction
with Learning Outcomes 2 and 3. Functional testing should
be completed against the requirements to ensure the
software solution meets the customer’s or client’s needs. The
requirements specifi cation used earlier in this unit may form
the basis of the testing. Initially and as a learning activity, the
tutor may provide a test plan that is relevant to one of the
basic software specifi cations.

This would identify a series of tests and the success criteria,
such as in a table format. The tutor will need to provide
a working software solution so that learners can test the
functionality. Learners could complete the tests on the sample
software solution and complete the test plan in their own
words. Once learners have developed some skills in carrying
out the required tests, they could then move on to generating
their own test plan for a diff erent software specifi cation. The
tutor should clearly diff erentiate the testing process as a
separate activity which is completed on the fi nished solution,
which is diff erent to any iterative testing carried out during
the software development process.

Testing of the software solution may be used with any or all
of the programming exercises in Learning Outcome 2 or 3.
The tutor could identify examples of changes to the software
solution such as the layout and presentation of any output
(whether on the display screen or printed). Improvements to
the GUI could then be listed and implemented as an outcome.
The overall delivery should continue in a workshop setting
with a range of practical activities that is also supported by
hand outs, demonstrations and verbal explanation.

Learners should be encouraged to store the test results for all
their testing into a specifi c folder with suitable fi lenames for
archive and reference purposes.

7

Developing Programming Solutions Level 2 Unit 27

SUGGESTED ASSESSMENT SCENARIOS AND TASK PLUS GUIDANCE ON
ASSESSING THE SUGGESTED TASKS

Assessment Criteria P1, M1

For P1, learners must explain the choice of programming
languages for a proposed solution. The explanation should
be produced in response to a clearly defi ned requirement and
could be evidenced using a report or presentation.

For merit criterion M1, learners must explain how the chosen
programming language will be suitable for future expansion or
enhancement to the proposed solution. The capabilities of the
chosen programming language to support these changes should
also be described in order to confi rm its suitability in the long
term. This could be evidenced by a report or presentation and
may be an extension to the evidence for the Pass criteria.

Assessment Criteria P2, P3, M2, D1

For P2, learners must outline the structure to be used for
the programming code in response to a clearly defi ned
requirement, The structure should be outlined and be
appropriate to meeting the clearly defi ned requirements.
Learners could evidence the criteria using a report or
presentation.

For P3 learners must produce programming code for a given
specifi cation using appropriate syntax. This may be evidenced
electronically, on screen or as a printed code listing.

For merit criterion M2, learners must format the code using an
appropriate layout, including indentation. This is likely to be
evidenced as an enhancement to P3.

For distinction criterion D1, learners must annotate the code
with comments in appropriate places, which contain the
necessary detail. The comments could include author, version and
explanations of what the code is intended to do in a number of
key places.

Assessment Criteria P4, D2

For P4, learners must use debugging techniques to fi nd and
correct errors in their code. This may be in the form of screen
captures, printed listings, error reports, trace statements,
‘before’ and ‘after’ code listing that is linked to clearly
identifi ed errors, etc. during the debugging process. The
type of debugging techniques used will determine which of
these is the most appropriate form of evidence. Any errors
found and the corrective actions implemented should be
noted and documented as part of the process.

For distinction criterion D2, learners must identify areas for
improvement in the code to enhance performance or improve
quality of the programme and implement these. The evidence
may be in the form of ‘before’ and ‘after’ code listings. If a section
of code has been rewritten to improve effi ciency and/or quality,
then annotations to the code listings should be used to identify
the changes made.

Assessment Criteria P5, M3

For P5, learners must test the functionality of the software
solution using a formalised test plan that identifi es what is to
be tested, the success criteria and the results of testing. The
tests should be carried out on the fi nished solution and make
sure the client/software requirements are met. The test plan
may be in a document or spreadsheet format and should
be based on the requirements specifi cation. Explanatory
comments should be added as part of the results of testing.

For merit criterion M3, learners must implement a change to
the software solution based on identifi ed refi nements. The
refi nements identifi ed should be clearly stated together with
the improvement process. Where appropriate, screen captures
or printouts of improvements to the GUI or output should be
included. Video evidence of the refi nements may be used if
appropriate, such as improvements to robotic solutions that
involve movement rather than displays. The refi nements should
be supported by evidence of changes to the code.

SUGGESTED SCENARIOS

Tutors could provide learners with an outline specifi cation
for a software development project. This could be based
around the audio or video capabilities of single board
microcomputers such as the Raspberry Pi. Alternatively a
simple arcade style computer game could be produced.
Learners should apply basic design principles to create a
solution, which is debugged and tested.

8www.ocr.org.uk

RESOURCES

Access to programming languages and software development
tools

Suitable hardware and platforms for development

Suitable testing and debugging tools

9

Developing Programming Solutions Level 2 Unit 27

MAPPING WITHIN THE QUALIFICATION TO THE OTHER UNITS

Unit 14: Computer systems

Unit 17: Customising software

Unit 22: Developing computer games

LINKS TO NOS

5.2 Software Development

CONTACT US
Staff at the OCR Customer Contact Centre are available to take your call
between 8am and 5.30pm, Monday to Friday.
We’re always delighted to answer questions and give advice.

Telephone 02476 851509
Email cambridgetechnicals@ocr.org.uk
www.ocr.org.uk

