D2: explain how the structure and design of a game can assist in maintenance and capacity
for extension.

Game Design
The original design for the CrabEscape game was

e ga Warm
Instructions -vigible : booclean = true
+show() +hide()
+Instructions() +Waormd)
Rock
1:*
World S _Eah
-] -Bnengy | int
=lives ' byte =3
-scome int=0
+MAX SPEED :int=5
+MAX ENERGY :int =200
SandWorld -speed : byte = 5
+startlevell) Otter -noVilorms :int = 0
ﬁ@réiname{] +move() +act()
:‘;'"“ Ga"‘*ﬁ[]_ +canSeeCrab() +move()
! o@g 'T""il]G y +Otter() +Crab(}
reGenerateCrabi) +@atCrabi) +reCenerate()
+SandWord() +eatWormd)
-addCounter() +canSeeWorm()
+act() :
-populate])
+removeObjects()

+setuplevel1()
+setuplevel2()
+setupleveld()
-gsetup NoticeBoard()
-setup ScomneBoard()
-updateCountars()

There were however a number of issues with this design. In particular the SandWorld class contains
too many setup methods, and no attributes. There is no direct connection between the SandWord
and the Instructions class, the Crab or the Otter.

Inheritance

Inheritance is one key way of implementing the DRY design principle (Don’t Repeat Yourself). The
Otter moves around looking for Crabs and if it gets close enough eats the Crab. The Crab moves
around looking for Worms, and if it gets close enough eats the worm.

To avoid any unnecessary duplication an Animal class should have been introduced based on the
Actor class, and containing a move() method, an eat() method and a canSee() method. Eat and
CanSee need a parameter of class so that the method can be used they can be used on any object.

Animal
SWALKING _SPEED :int=5
+Animal(
+move() . void
+atWorkiEdge() : boolean
+candee(clss | Class) | boolean
+gat(clss ; Class) ; void

The Animal is an Actor, and the Otter and the Crab are Animals, and therefore Actors, inheriting all
the properties and methods of Actors and Animals. All animals need to be able to detect the edge of

the world, and respond accordingly.

Single responsibility Principle

Each class should have a single responsibility, the SandWorld class is responsible for controlling the
game, and setting up the game. This class is too big and does too many operations. That is why a
Map class was added (Sandscape), and this class is responsible for setting up the various game levels
and providing access to the Otter and the Crab.

It is then easier to then to maintain and extend the game as the map class can be updated if new
levels are needed, and the SandWorld class can be updated if the way the game works changes.

It is also easier to maintain and debug two smaller classes, rather than one large class.

Sandscape
-world : SandWorld
-scott | Crab
<-atter : Otter
-noWeorms ! byte
+Sandscape(workd | SandWeodd)
+getCrab() : Crab
+getNoWWaorms() : int
+satuplevel(levelNo @ byte) @ void
-addActors(rows @ String []) : woid

Readability

One of the most important factors that affect the ease of maintenance and extension is making the
code and the design as understandable as possible. The most important factor is the choice of
names for classes, attributes and methods. For example, Sandscape is not necessarily the most
obvious name for this class. Quite a number of games are based on the concept of a Map, so calling
this class Map, would have been better for future developers to immediately understand what its

primary responsibility is.

Similarly Instructions was a poor name for a class that’s purpose is to display game instructions to
the user. NoticeBoard, or MessageBox are much clearer. In fact a NoticeBoard can be used for
more than just displaylnstructions(), it can also be used to displayWinGame() i.e. messages to the
user when they win the game.

The method populate is another example of a poor choice of name, as another developer will not
know what objects are populating what object without looking at the code or comments.

Consistency of naming is also crucial with singular nouns for class names, names starting with verbs
for method names, and plural names used for lists or arrays. All names in java other than class
names should start with a lower case letter, and each subsequent work starting with a capital letter.
They all help coders understand the code at a glance without having to examine the code in detail.

Block comments should also be used to explain each class, and each method as they can be used to
automatically generate APl documentation in html. They need however to explain the details that
are not obvious from the name of the class or method. Here is an example.

public void showInstructions()

{
showDescription();
showKeys();
showScoring();

}

private void showDescription()
{
yPos
XxPos

TOP_MARGIN;
LEFT_MARGIN;

String [] lines =
{

}s

showHeading();
showLines(lines);

The layout of the code using indentation and blank lines is important, as a typical game can be
millions of lines of code, so it is vital that developers can scan quickly through the code to find any
particular part.

Another aspect of this is using named constants or variables rather than numbers in the code. It
make the code more readable, and also easier to extend and maintain. In this example it is easier to
move the position of the text in the NoticeBoard, by just changing the values of the constants.

public class NoticeBoard extends Actor

¢ public static final int LEFT_MARGIN = 60;
public static final int TOP_MARGIN = 80;
public static final int LINE_HEIGHT = 20;

private int yPos;

private int xPos;

Minimize Upfront Design

This principle is also known as YAGNI (You ain’t going to need it!). The showDescription method
uses and array of strings to setup messages that the NoticeBoard will display. Ideally the actual
messages should be in a text file, which is loaded by the method. This would make it much easier to
extent or maintain the code the actual messages can be more easily changed without having to
change or re-compile the codebase. So for example different versions of the messages in different
languages would be possible.

However this game was being developed for assessment purposes, and | knew | wasn’t going to
need it!!!

The need to Re-factor

Although the design started out nice and simple, as the code was largely added without re-factoring
it as we went along the end result looks overly complex. It would be easier to maintain, and easier
to extend if it was examined again, and simplified where possible. There are well established
“smells” that can be found and removed, making the code much easier to maintain.

Final Design

The following design was reverse engineered from the final code version of the game. It shows how
complex the final version is. Using established design patterns is one way that this could perhaps be
simplified.

4 Parmdigm Stmdard EdsonDakiands Calege)

Good sources of reference

1. “Code Complete 2” by Steve McConnell http://www.stevemcconnell.com/cc.htm
“Top 15+ Best Practices for Writing Super Readable Code”
http://code.tutsplus.com/tutorials/top-15-best-practices-for-writing-super-readable-code--
net-8118

3. “Code Refactoring” http://refactoring.com/catalog/index.html

4. “Design Patterns in Games Programming”
http://www.gamasutra.com/blogs/MichaelHaney/20110920/90250/Design_Patterns_in_Ga
me_Programming.php

