

ASP.NET MVC Music Store
Tutorial

Version 3.0b

Jon Galloway - Microsoft

4/28/2011

http://mvcmusicstore.codeplex.com - Licensed under Creative Commons Attribution 3.0 License.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 1

ASP.NET MVC Music Store Tutorial

Contents
Overview ...4

1. File -> New Project ..9

Installing the software ..9

Creating a new ASP.NET MVC 3 project .. 11

2. Controllers ... 15

Adding a HomeController .. 15

Running the Application .. 17

Adding a StoreController ... 19

3. Views and Models.. 24

Adding a View template .. 24

Using a Layout for common site elements .. 27

Updating the StyleSheet .. 29

Using a Model to pass information to our View.. 31

Adding Links between pages ... 41

4. Data Access .. 44

Database access with Entity Framework Code-First ... 44

Changes to our Model Classes ... 44

Adding the App_Data folder .. 45

Creating a Connection String in the web.config file .. 46

Adding a Context Class .. 46

Adding our store catalog data ... 47

Querying the Database .. 48

Updating the Store Index to query the database .. 49

Updating Store Browse and Details to use live data ... 49

5. Edit Forms using Scaffolding .. 54

Creating the StoreManagerController ... 54

Modifying a Scaffolded View ... 55

A first look at the Store Manager .. 57

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 2

Looking at the Store Manager Controller code ... 61

Store Manager Index and Details actions .. 62

The Create Action Methods... 62

Passing information to a View using ViewBag... 62

HTML Helpers to display the Drop Downs in the Create View .. 63

Handling the Posted Form values .. 64

Handling Edits .. 66

Handling Deletion .. 68

Using a custom HTML Helper to truncate text .. 72

6. Using Data Annotations for Model Validation .. 76

Adding Validation to our Album Forms ... 76

Testing the Client-Side Validation ... 79

7. Membership and Authorization .. 81

Adding the AccountController and Views ... 81

Adding an Administrative User with the ASP.NET Configuration site ... 82

Role-based Authorization .. 87

8. Shopping Cart with Ajax Updates .. 89

Adding the Cart, Order, and OrderDetail model classes ... 89

Managing the Shopping Cart business logic .. 91

ViewModels ... 95

The Shopping Cart Controller .. 97

Ajax Updates with jQuery .. 99

9. Registration and Checkout .. 109

Migrating the Shopping Cart ... 113

Creating the CheckoutController... 114

Adding the AddressAndPayment view .. 119

Defining validation rules for the Order ... 121

Adding the Checkout Complete view .. 123

Updating The Error view .. 124

10. Final updates to Navigation and Site Design ... 126

Creating the Shopping Cart Summary Partial View ... 126

Creating the Genre Menu Partial View ... 128

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 3

Updating Site Layout to display our Partial Views .. 130

Update to the Store Browse page ... 130

Updating the Home Page to show Top Selling Albums ... 132

Conclusion ... 135

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 4

Overview

The MVC Music Store is a tutorial application that introduces and explains step-by-step how to use ASP.NET

MVC and Visual Web Developer for web development. We’ll be starting slowly, so beginner level web

development experience is okay.

The application we’ll be building is a simple music store. There are three main parts to the application: shopping,

checkout, and administration.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 5

Visitors can browse Albums by Genre:

They can view a single album and add it to their cart:

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 6

They can review their cart, removing any items they no longer want:

Proceeding to Checkout will prompt them to login or register for a user account.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 7

After creating an account, they can complete the order by filling out shipping and payment information. To keep

things simple, we’re running an amazing promotion: everything’s free if they enter promotion code “FREE”!

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 8

After ordering, they see a simple confirmation screen:

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 9

In addition to customer-faceing pages, we’ll also build an administrator section that shows a list of albums from

which Administrators can Create, Edit, and Delete albums:

1. File -> New Project

Installing the software
This tutorial will begin by creating a new ASP.NET MVC 3 project using the free Visual Web Developer 2010

Express (which is free), and then we’ll incrementally add features to create a complete functioning application.

Along the way, we’ll cover database access, form posting scenarios, data validation, using master pages for

consistent page layout, using AJAX for page updates and validation, user login, and more.

You can follow along step by step, or you can download the completed application from

http://mvcmusicstore.codeplex.com.

You can use either Visual Studio 2010 SP1 or Visual Web Developer 2010 Express SP1 (a free version of Visual

Studio 2010) to build the application. We’ll be using the SQL Server Compact (also free) to host the database.

Before you start, make sure you've installed the prerequisites listed below. You can install all of them using the

following Web Platform Installer

link: http://www.microsoft.com/web/gallery/install.aspx?appid=VWD2010SP1Pack

Note: You can find this link on the big green button at this (easier to remember) link: http://asp.net/mvc

http://mvcmusicstore.codeplex.com/
http://www.microsoft.com/web/gallery/install.aspx?appid=VWD2010SP1Pack
http://asp.net/mvc

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 10

The Web Platform Installer will check what you’ve got installed and just download what you need.

If you want to individually install the prerequisites using the following links instead of using the above link, use

the following links (written out in case you’re using a printed version of this tutorial):

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 11

 Visual Studio Web Developer Express SP1 prerequisites

http://www.microsoft.com/web/gallery/install.aspx?appid=VWD2010SP1Pack

 ASP.NET MVC 3 Tools Update

http://www.microsoft.com/web/gallery/install.aspx?appid=MVC3

 SQL Server Compact 4.0 - including both runtime and tools support

http://www.microsoft.com/web/gallery/install.aspx?appid=SQLCE;SQLCEVSTools_4_0

Note: If you're using Visual Studio 2010 instead of Visual Web Developer 2010, install the prerequisites with this

link instead:

Visual Studio Web Developer Express SP1 prerequisites

http://www.microsoft.com/web/gallery/install.aspx?appsxml=&appid=VS2010SP1Pack

I highly recommend you use the first Web Platform Installer link, as it will make sure you’ve got everything set

up correctly.

Creating a new ASP.NET MVC 3 project
We’ll start by selecting “New Project” from the File menu in Visual Web Developer. This brings up the New

Project dialog.

We’ll select the Visual C# -> Web Templates group on the left, then choose the “ASP.NET MVC 3 Web

Application” template in the center column. Name your project MvcMusicStore and press the OK button.

http://www.microsoft.com/web/gallery/install.aspx?appid=VWD2010SP1Pack
http://www.microsoft.com/web/gallery/install.aspx?appsxml=&appid=MVC3
http://www.microsoft.com/web/gallery/install.aspx?appid=SQLCE;SQLCEVSTools_4_0
http://www.microsoft.com/web/gallery/install.aspx?appid=VWD2010SP1Pack

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 12

This will display a secondary dialog which allows us to make some MVC specific settings for our project. Select

the following:

 Project Template - select Empty

 View Engine - select Razor

 Use HTML5 semantic markup - checked

Verify that your settings are as shown below, then press the OK button.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 13

This will create our project. Let’s take a look at the folders that have been added to our application in the

Solution Explorer on the right side.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 14

The Empty MVC 3 template isn’t completely empty – it adds a basic folder structure:

ASP.NET MVC makes use of some basic naming conventions for folder names:

Folder Purpose

/Controllers Controllers respond to input from the browser, decide what to do with it,
and return response to the user.

/Views Views hold our UI templates

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 15

/Models Models hold and manipulate data

/Content This folder holds our images, CSS, and any other static content

/Scripts This folder holds our JavaScript files

These folders are included even in an Empty ASP.NET MVC application because the ASP.NET MVC framework by

default uses a “convention over configuration” approach and makes some default assumptions based on folder

naming conventions. For instance, controllers look for views in the Views folder by default without you having

to explicitly specify this in your code. Sticking with the default conventions reduces the amount of code you

need to write, and can also make it easier for other developers to understand your project. We’ll explain these

conventions more as we build our application.

2. Controllers
With traditional web frameworks, incoming URLs are typically mapped to files on disk. For example: a request

for a URL like "/Products.aspx" or "/Products.php" might be processed by a "Products.aspx" or "Products.php"

file.

Web-based MVC frameworks map URLs to server code in a slightly different way. Instead of mapping incoming

URLs to files, they instead map URLs to methods on classes. These classes are called "Controllers" and they are

responsible for processing incoming HTTP requests, handling user input, retrieving and saving data, and

determining the response to send back to the client (display HTML, download a file, redirect to a different URL,

etc.).

Adding a HomeController

We’ll begin our MVC Music Store application by adding a Controller class that will handle URLs to the Home

page of our site. We’ll follow the default naming conventions of ASP.NET MVC and call it HomeController.

Right-click the “Controllers” folder within the Solution Explorer and select “Add”, and then the “Controller…”

command:

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 16

This will bring up the “Add Controller” dialog. Name the controller “HomeController” and press the Add button.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 17

This will create a new file, HomeController.cs, with the following code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;

namespace MvcMusicStore.Controllers
{
 public class HomeController : Controller
 {
 //
 // GET: /Home/

 public ActionResult Index()
 {
 return View();
 }

 }
}

To start as simply as possible, let’s replace the Index method with a simple method that just returns a string.

We’ll make two changes:

 Change the method to return a string instead of an ActionResult

 Change the return statement to return “Hello from Home”

The method should now look like this:

public string Index()
{
 return "Hello from Home";
}

Running the Application

Now let’s run the site. We can start our web-server and try out the site using any of the following::

 Choose the Debug ⇨ Start Debugging menu item

 Click the Green arrow button in the toolbar

 Use the keyboard shortcut, F5.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 18

Using any of the above steps will compile our project, and then cause the ASP.NET Development Server that is

built-into Visual Web Developer to start. A notification will appear in the bottom corner of the screen to indicate

that the ASP.NET Development Server has started up, and will show the port number that it is running under.

Visual Web Developer will then automatically open a browser window whose URL points to our web-server.

This will allow us to quickly try out our web application:

Okay, that was pretty quick – we created a new website, added a three line function, and we’ve got text in a

browser. Not rocket science, but it’s a start.

Note: Visual Web Developer includes the ASP.NET Development Server, which will run your website on a random

free “port” number. In the screenshot above, the site is running at http://localhost:26641/, so it’s using port

26641. Your port number will be different. When we talk about URL’s like /Store/Browse in this tutorial, that will

go after the port number. Assuming a port number of 26641, browsing to /Store/Browse will mean browsing to

http://localhost:26641/Store/Browse.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 19

Adding a StoreController

We added a simple HomeController that implements the Home Page of our site. Let’s now add another

controller that we’ll use to implement the browsing functionality of our music store. Our store controller will

support three scenarios:

 A listing page of the music genres in our music store

 A browse page that lists all of the music albums in a particular genre

 A details page that shows information about a specific music album

We’ll start by adding a new StoreController class.. If you haven’t already, stop running the application either by

closing the browser or selecting the Debug ⇨ Stop Debugging menu item.

Now add a new StoreController. Just like we did with HomeController, we’ll do this by right-clicking on the

“Controllers” folder within the Solution Explorer and choosing the Add->Controller menu item

Our new StoreController already has an “Index” method. We’ll use this “Index” method to implement our

listing page that lists all genres in our music store. We’ll also add two additional methods to implement the two

other scenarios we want our StoreController to handle: Browse and Details.

These methods (Index, Browse and Details) within our Controller are called “Controller Actions”, and as you’ve

already seen with the HomeController.Index()action method, their job is to respond to URL requests and

(generally speaking) determine what content should be sent back to the browser or user that invoked the URL.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 20

We’ll start our StoreController implementation by changing theIndex() method to return the string “Hello from

Store.Index()” and we’ll add similar methods for Browse() and Details():

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;

namespace MvcMusicStore.Controllers
{
 public class StoreController : Controller
 {
 //
 // GET: /Store/

 public string Index()
 {
 return "Hello from Store.Index()";
 }

 //
 // GET: /Store/Browse

 public string Browse()
 {
 return "Hello from Store.Browse()";
 }

 //
 // GET: /Store/Details

 public string Details()
 {
 return "Hello from Store.Details()";
 }
 }
}

Run the project again and browse the following URLs:

 /Store

 /Store/Browse

 /Store/Details

Accessing these URLs will invoke the action methods within our Controller and return string responses:

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 21

That’s great, but these are just constant strings. Let’s make them dynamic, so they take information from the

URL and display it in the page output.

First we’ll change the Browse action method to retrieve a querystring value from the URL. We can do this by

adding a “genre” parameter to our action method. When we do this ASP.NET MVC will automatically pass any

querystring or form post parameters named “genre” to our action method when it is invoked.

//
// GET: /Store/Browse?genre=Disco

public string Browse(string genre)
{
 string message = HttpUtility.HtmlEncode("Store.Browse, Genre = " + genre);

 return message;
}

Note: We’re using the HttpUtility.HtmlEncode utility method to sanitize the user input. This prevents users from

injecting Javascript into our View with a link like

/Store/Browse?Genre=<script>window.location=’http://hackersite.com’</script>.

Now let’s browse to /Store/Browse?Genre=Disco

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 22

Let’s next change the Details action to read and display an input parameter named ID. Unlike our previous

method, we won’t be embedding the ID value as a querystring parameter. Instead we’ll embed it directly within

the URL itself. For example: /Store/Details/5.

ASP.NET MVC lets us easily do this without having to configure anything. ASP.NET MVC’s default routing

convention is to treat the segment of a URL after the action method name as a parameter named “ID”. If your

action method has a parameter named ID then ASP.NET MVC will automatically pass the URL segment to you as

a parameter.

//
// GET: /Store/Details/5

public string Details(int id)
{
 string message = "Store.Details, ID = " + id;

 return message;
}

Run the application and browse to /Store/Details/5:

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 23

Let’s recap what we’ve done so far:

 We’ve created a new ASP.NET MVC project in Visual Web Developer

 We’ve discussed the basic folder structure of an ASP.NET MVC application

 We’ve learned how to run our website using the ASP.NET Development Server

 We’ve created two Controller classes: a HomeController and a StoreController

 We’ve added Action Methods to our controllers which respond to URL requests and return text to the

browser

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 24

3. Views and Models

So far we’ve just been returning strings from controller actions. That’s a nice way to get an idea of how

controllers work, but it’s not how you’d want to build a real web application. We are going to want a better way

to generate HTML back to browsers visiting our site – one where we can use template files to more easily

customize the HTML content send back. That’s exactly what Views do.

Adding a View template

To use a view-template, we’ll change the HomeController Index method to return an ActionResult, and have it

return View(), like below:

public class HomeController : Controller
{
 //
 // GET: /Home/

 public ActionResult Index()
 {
 return View();
 }
}

The above change indicates that instead of returned a string, we instead want to use a “View” to generate a
result back.

We’ll now add an appropriate View template to our project. To do this we’ll position the text cursor within the
Index action method, then right-click and select “Add View”. This will bring up the Add View dialog:

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 25

The “Add View” dialog allows us to quickly and easily generate View template files. By default the “Add View”

dialog pre-populates the name of the View template to create so that it matches the action method that will use

it. Because we used the “Add View” context menu within the Index() action method of our HomeController, the

“Add View” dialog above has “Index” as the view name pre-populated by default. We don’t need to change any

of the options on this dialog, so click the Add button.

When we click the Add button, Visual Web Developer will create a new Index.cshtml view template for us in the

\Views\Home directory, creating the folder if doesn’t already exist.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 26

The name and folder location of the “Index.cshtml” file is important, and follows the default ASP.NET MVC

naming conventions. The directory name, \Views\Home, matches the controller - which is named

HomeController. The view template name, Index, matches the controller action method which will be displaying

the view.

ASP.NET MVC allows us to avoid having to explicitly specify the name or location of a view template when we

use this naming convention to return a view. It will by default render the \Views\Home\Index.cshtml view

template when we write code like below within our HomeController:

public class HomeController : Controller
{
 //
 // GET: /Home/

 public ActionResult Index()
 {
 return View();
 }
}

Visual Web Developer created and opened the “Index.cshtml” view template after we clicked the “Add” button

within the “Add View” dialog. The contents of Index.cshtml are shown below.

@{

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 27

 ViewBag.Title = "Index";
}

<h2>Index</h2>

This view is using the Razor syntax, which is more concise than the Web Forms view engine used in ASP.NET

Web Forms and previous versions of ASP.NET MVC. The Web Forms view engine is still available in ASP.NET MVC

3, but many developers find that the Razor view engine fits ASP.NET MVC development really well.

The first three lines set the page title using ViewBag.Title. We’ll look at how this works in more detail soon, but

first let’s update the text heading text and view the page. Update the <h2> tag to say “This is the Home Page” as

shown below.

@{
 ViewBag.Title = "Index";
}

<h2>This is the Home Page</h2>

Running the application shows that our new text is visible on the home page.

Using a Layout for common site elements

Most websites have content which is shared between many pages: navigation, footers, logo images, stylesheet

references, etc. The Razor view engine makes this easy to manage using a page called _Layout.cshtml which has

automatically been created for us inside the /Views/Shared folder.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 28

Double-click on this folder to view the contents, which are shown below.

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>@ViewBag.Title</title>
 <link href="@Url.Content("~/Content/Site.css")" rel="stylesheet" type="text/css" />
 <script src="@Url.Content("~/Scripts/jquery-1.5.1.min.js")"
 type="text/javascript"></script>
 <script src="@Url.Content("~/Scripts/modernizr-1.7.min.js")"
 type="text/javascript"></script>
</head>

<body>
 @RenderBody()
</body>
</html>

The content from our individual views will be displayed by the @RenderBody() command, and any common

content that we want to appear outside of that can be added to the _Layout.cshtml markup. We’ll want our

MVC Music Store to have a common header with links to our Home page and Store area on all pages in the site,

so we’ll add that to the template directly above that @RenderBody() statement.

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>@ViewBag.Title</title>
 <link href="@Url.Content("~/Content/Site.css")" rel="stylesheet" type="text/css" />
 <script src="@Url.Content("~/Scripts/jquery-1.5.1.min.js")"
 type="text/javascript"></script>

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 29

 <script src="@Url.Content("~/Scripts/modernizr-1.7.min.js")"
 type="text/javascript"></script>
</head>
<body>
 <div id="header">
 <h1>
 ASP.NET MVC MUSIC STORE</h1>
 <ul id="navlist">
 <li class="first">Home
 Store

 </div>

 @RenderBody()
</body>
</html>

Updating the StyleSheet

The empty project template includes a very streamlined CSS file which just includes styles used to display

validation messages. Our designer has provided some additional CSS and images to define the look and feel for

our site, so we’ll add those in now.

The updated CSS file and Images are included in the Content directory of MvcMusicStore-Assets.zip which is

available at http://mvcmusicstore.codeplex.com. We’ll select both of them in Windows Explorer and drop them

into our Solution’s Content folder in Visual Web Developer, as shown below:

You’ll be asked to confirm if you want to overwrite the existing Site.css file. Click Yes.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 30

The Content folder of your application will now appear as follows:

Now let's run the application and see how our changes look on the Home page.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 31

 Let’s review what’s changed: The HomeController’s Index action method found and displayed the

\Views\Home\Index.cshtmlView template, even though our code called “return View()”, because our

View template followed the standard naming convention.

 The Home Page is displaying a simple welcome message that is defined within the

\Views\Home\Index.cshtml view template.

 The Home Page is using our _Layout.cshtml template, and so the welcome message is contained within

the standard site HTML layout.

Using a Model to pass information to our View

A View template that just displays hardcoded HTML isn’t going to make a very interesting web site. To create a

dynamic web site, we’ll instead want to pass information from our controller actions to our view templates.

In the Model-View-Controller pattern, the term Model refers to objects which represent the data in the

application. Often, model objects correspond to tables in your database, but they don’t have to.

Controller action methods which return an ActionResult can pass a model object to the view. This allows a

Controller to cleanly package up all the information needed to generate a response, and then pass this

information off to a View template to use to generate the appropriate HTML response. This is easiest to

understand by seeing it in action, so let’s get started.

First we’ll create some Model classes to represent Genres and Albums within our store. Let’s start by creating a

Genre class. Right-click the “Models” folder within your project, choose the “Add Class” option, and name the

file “Genre.cs”.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 32

Then add a public string Name property to the class that was created:

public class Genre
{
 public string Name { get; set; }
}

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 33

Note: In case you're wondering, the { get; set; } notation is making use of C#'s auto-implemented properties

feature. This gives us the benefits of a property without requiring us to declare a backing field.

Next, follow the same steps to create an Album class (named Album.cs) that has a Title and a Genre property:

public class Album
{
 public string Title { get; set; }
 public Genre Genre { get; set; }
}

Now we can modify the StoreController to use Views which display dynamic information from our Model. If - for

demonstration purposes right now - we named our Albums based on the request ID, we could display that

information as in the view below.

We’ll start by changing the Store Details action so it shows the information for a single album. Add a “using”

statement to the top of the StoreControllers class to include the MvcMusicStore.Models namespace, so we

don’t need to type MvcMusicStore.Models.Album every time we want to use the album class. The “usings”

section of that class should now appear as below.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using MvcMusicStore.Models;

Next, we’ll update the Details controller action so that it returns an ActionResult rather than a string, as we did

with the HomeController’s Index method.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 34

public ActionResult Details(int id)

Now we can modify the logic to return an Album object to the view. Later in this tutorial we will be retrieving

the data from a database – but for right now we will use "dummy data" to get started.

public ActionResult Details(int id)
{
 var album = new Album { Title = "Album " + id };

 return View(album);
}

Note: If you’re unfamiliar with C#, you may assume that using var means that our album variable is late-bound.

That’s not correct – the C# compiler is using type-inference based on what we’re assigning to the variable to

determine that album is of type Album and compiling the local album variable as an Album type, so we get

compile-time checking and Visual Studio code-editor support.

Let’s now create a View template that uses our Album to generate an HTML response. Before we do that we

need to build the project so that the Add View dialog knows about our newly created Album class. You can build

the project by selecting the Debug⇨Build MvcMusicStore menu item (for extra credit, you can use the Ctrl-Shift-

B shortcut to build the project).

Now that we've set up our supporting classes, we're ready to build our View template. Right-click within the

Details method and select “Add View…” from the context menu.

We are going to create a new View template like we did before with the HomeController. Because we are

creating it from the StoreController it will by default be generated in a \Views\Store\Index.cshtml file.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 35

Unlike before, we are going to check the “Create a strongly-typed” view checkbox. We are then going to select

our “Album” class within the “View data-class” drop-downlist. This will cause the “Add View” dialog to create a

View template that expects that an Album object will be passed to it to use.

When we click the “Add” button our \Views\Store\Details.cshtml View template will be created, containing the

following code.

@model MvcMusicStore.Models.Album

@{
 ViewBag.Title = "Details";
}

<h2>Details</h2>

Notice the first line, which indicates that this view is strongly-typed to our Album class. The Razor view engine

understands that it has been passed an Album object, so we can easily access model properties and even have

the benefit of IntelliSense in the Visual Web Developer editor.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 36

Update the <h2> tag so it displays the Album’s Title property by modifying that line to appear as follows.

<h2>Album: @Model.Title</h2>

Notice that IntelliSense is triggered when you enter the period after the @Model keyword, showing the

properties and methods that the Album class supports.

Let's now re-run our project and visit the /Store/Details/5 URL. We'll see details of an Album like below.

Now we’ll make a similar update for the Store Browse action method. Update the method so it returns an

ActionResult, and modify the method logic so it creates a new Genre object and returns it to the View.

public ActionResult Browse(string genre)

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 37

{
 var genreModel = new Genre { Name = genre };

 return View(genreModel);
}

Right-click in the Browse method and select “Add View…” from the context menu, then add a View that is

strongly-typed add a strongly typed to the Genre class.

Update the <h2> element in the view code (in /Views/Store/Browse.cshtml) to display the Genre information.

@model MvcMusicStore.Models.Genre

@{
 ViewBag.Title = "Browse";
}

<h2>Browsing Genre: @Model.Name</h2>

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 38

Now let’s re-run our project and browse to the /Store/Browse?Genre=Disco URL. We’ll see the Browse page

displayed like below.

Finally, let’s make a slightly more complex update to the Store Index action method and view to display a list of

all the Genres in our store. We’ll do that by using a List of Genres as our model object, rather than just a single

Genre.

public ActionResult Index()
{
 var genres = new List<Genre>
 {
 new Genre { Name = "Disco"},
 new Genre { Name = "Jazz"},
 new Genre { Name = "Rock"}
 };

 return View(genres);
}

Right-click in the Store Index action method and select Add View as before, select Genre as the Model class, and

press the Add button.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 39

First we’ll change the @model declaration to indicate that the view will be expecting several Genre objects

rather than just one. Change the first line of /Store/Index.cshtml to read as follows:

@model IEnumerable<MvcMusicStore.Models.Genre>

This tells the Razor view engine that it will be working with a model object that can hold several Genre objects.

We’re using an IEnumerable<Genre> rather than a List<Genre> since it’s more generic, allowing us to change

our model type later to any object type that supports the IEnumerable interface.

Next, we’ll loop through the Genre objects in the model as shown in the completed view code below.

@model IEnumerable<MvcMusicStore.Models.Genre>
@{
 ViewBag.Title = "Store";
}
<h3>Browse Genres</h3>

<p>
 Select from @Model.Count() genres:</p>

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 40

 @foreach (var genre in Model)
 {
 @genre.Name
 }

Notice that we have full IntelliSense support as we enter this code, so that when we type “@Model.” we see all

methods and properties supported by an IEnumerable of type Genre.

Within our “foreach” loop, Visual Web Developer knows that each item is of type Genre, so we see IntelliSence

for each the Genre type.

Next, the scaffolding feature examined the Genre object and determined that each will have a Name property,

so it loops through and writes them out. It also generates Edit, Details, and Delete links to each individual item.

We’ll take advantage of that later in our store manager, but for now we’d like to have a simple list instead.

When we run the application and browse to /Store, we see that both the count and list of Genres is displayed.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 41

Adding Links between pages

Our /Store URL that lists Genres currently lists the Genre names simply as plain text. Let’s change this so that

instead of plain text we instead have the Genre names link to the appropriate /Store/Browse URL, so that

clicking on a music genre like “Disco” will navigate to the /Store/Browse?genre=Disco URL. We could update our

\Views\Store\Index.cshtml View template to output these links using code like below (don’t type this in - we’re

going to improve on it):

 @foreach (var genre in Model)
 {
 @genre.Name
 }

That works, but it could lead to trouble later since it relies on a hardcoded string. For instance, if we wanted to

rename the Controller, we’d need to search through our code looking for links that need to be updated.

An alternative approach we can use is to take advantage of an HTML Helper method. ASP.NET MVC includes

HTML Helper methods which are available from our View template code to perform a variety of common tasks

just like this. The Html.ActionLink() helper method is a particularly useful one, and makes it easy to build HTML

<a> links and takes care of annoying details like making sure URL paths are properly URL encoded.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 42

Html.ActionLink() has several different overloads to allow specifying as much information as you need for your

links. In the simplest case, you’ll supply just the link text and the Action method to go to when the hyperlink is

clicked on the client. For example, we can link to “/Store/” Index() method on the Store Details page with the

link text “Go to the Store Index” using the following call:

@Html.ActionLink("Go to the Store Index", "Index")

Note: In this case, we didn’t need to specify the controller name because we’re just linking to another action

within the same controller that’s rendering the current view.

Our links to the Browse page will need to pass a parameter, though, so we’ll use another overload of the

Html.ActionLink method that takes three parameters:

1. Link text, which will display the Genre name

2. Controller action name (Browse)

3. Route parameter values, specifying both the name (Genre) and the value (Genre name)

Putting that all together, here’s how we’ll write those links to the Store Index view:

 @foreach (var genre in Model)
 {
 @Html.ActionLink(genre.Name, "Browse", new { genre = genre.Name })
 }

Now when we run our project again and access the /Store/ URL we will see a list of genres. Each genre is a

hyperlink – when clicked it will take us to our /Store/Browse?genre=[genre] URL.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 43

The HTML for the genre list looks like this:

 Disco
 Jazz
 Rock

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 44

4. Data Access
So far, we’ve just been passing “dummy data” from our Controllers to our View templates. Now we’re ready to
hook up a real database. In this tutorial we’ll be covering how to use SQL Server Compact Edition (often called
SQL CE) as our database engine. SQL CE is a free, embedded, file based database that doesn’t require any
installation or configuration, which makes it really convenient for local development.

Database access with Entity Framework Code-First

We’ll use the Entity Framework (EF) support that is included in ASP.NET MVC 3 projects to query and update the

database. EF is a flexible object relational mapping (ORM) data API that enables developers to query and update

data stored in a database in an object-oriented way.

Entity Framework version 4 supports a development paradigm called code-first. Code-first allows you to

create model object by writing simple classes (also known as POCO from "plain-old" CLR objects), and can

even create the database on the fly from your classes.

Changes to our Model Classes

We will be leveraging the database creation feature in Entity Framework in this tutorial. Before we do that,

though, let’s make a few minor changes to our model classes to add in some things we’ll be using later on.

Adding the Artist Model Classes

Our Albums will be associated with Artists, so we’ll add a simple model class to describe an Artist. Add a new

class to the Models folder named Artist.cs using the code shown below.

namespace MvcMusicStore.Models
{
 public class Artist
 {
 public int ArtistId { get; set; }
 public string Name { get; set; }
 }
}

Updating our Model Classes

Update the Album class as shown below.

namespace MvcMusicStore.Models
{
 public class Album
 {
 public int AlbumId { get; set; }
 public int GenreId { get; set; }
 public int ArtistId { get; set; }
 public string Title { get; set; }
 public decimal Price { get; set; }
 public string AlbumArtUrl { get; set; }

 public Genre Genre { get; set; }
 public Artist Artist { get; set; }

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 45

 }
}

Next, make the following updates to the Genre class.

using System.Collections.Generic;

namespace MvcMusicStore.Models
{
 public partial class Genre
 {
 public int GenreId { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 public List<Album> Albums { get; set; }
 }
}

Adding the App_Data folder

We’ll add an App_Data directory to our project to hold our SQL Server Express database files. App_Data is a

special directory in ASP.NET which already has the correct security access permissions for database access. From

the Project menu, select Add ASP.NET Folder, then App_Data.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 46

Creating a Connection String in the web.config file

We will add a few lines to the website’s configuration file so that Entity Framework knows how to connect to

our database. Double-click on the Web.config file located in the root of the project.

Scroll to the bottom of this file and add a <connectionStrings> section directly above the last line, as shown

below.

 <connectionStrings>
 <add name="MusicStoreEntities"
 connectionString="Data Source=|DataDirectory|MvcMusicStore.sdf"
 providerName="System.Data.SqlServerCe.4.0"/>
 </connectionStrings>
</configuration>

Adding a Context Class

Right-click the Models folder and add a new class named MusicStoreEntities.cs.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 47

This class will represent the Entity Framework database context, and will handle our create, read, update, and

delete operations for us. The code for this class is shown below.

using System.Data.Entity;

namespace MvcMusicStore.Models
{
 public class MusicStoreEntities : DbContext
 {
 public DbSet<Album> Albums { get; set; }
 public DbSet<Genre> Genres { get; set; }
 }
}

That’s it - there’s no other configuration, special interfaces, etc. By extending the DbContext base class, our

MusicStoreEntities class is able to handle our database operations for us. Now that we’ve got that hooked up,

let’s add a few more properties to our model classes to take advantage of some of the additional information in

our database.

Adding our store catalog data

We will take advantage of a feature in Entity Framework which adds “seed” data to a newly created database.

This will pre-populate our store catalog with a list of Genres, Artists, and Albums. The MvcMusicStore-Assets.zip

download - which included our site design files used earlier in this tutorial - has a class file with this seed data,

located in a folder named Code.

Within the Code / Models folder, locate the SampleData.cs file and drop it into the Models folder in our project,

as shown below.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 48

Now we need to add one line of code to tell Entity Framework about that SampleData class. Double-click on the

Global.asax file in the root of the project to open it and add the following line to the top the Application_Start

method.

protected void Application_Start()
{
 System.Data.Entity.Database.SetInitializer(new MvcMusicStore.Models.SampleData());

 AreaRegistration.RegisterAllAreas();

 RegisterGlobalFilters(GlobalFilters.Filters);
 RegisterRoutes(RouteTable.Routes);
}

At this point, we’ve completed the work necessary to configure Entity Framework for our project.

Querying the Database

Now let’s update our StoreController so that instead of using “dummy data” it instead calls into our database to

query all of its information. We’ll start by declaring a field on the StoreController to hold an instance of the

MusicStoreEntities class, named storeDB:

public class StoreController : Controller
{
 MusicStoreEntities storeDB = new MusicStoreEntities();

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 49

Updating the Store Index to query the database

The MusicStoreEntities class is maintained by the Entity Framework and exposes a collection property for each

table in our database. Let’s update our StoreController’s Index action to retrieve all Genres in our database.

Previously we did this by hard-coding string data. Now we can instead just use the Entity Framework context

Generes collection:

public ActionResult Index()
{
 var genres = storeDB.Genres.ToList();

 return View(genres);
}

No changes need to happen to our View template since we’re still returning the same StoreIndexViewModel we

returned before - we’re just returning live data from our database now.

When we run the project again and visit the “/Store” URL, we’ll now see a list of all Genres in our database:

Updating Store Browse and Details to use live data

With the /Store/Browse?genre=[some-genre] action method, we’re searching for a Genre by name. We only

expect one result, since we shouldn’t ever have two entries for the same Genre name, and so we can use the

.Single() extension in LINQ to query for the appropriate Genre object like this (don’t type this yet):

var example = storeDB.Genres.Single(g => g.Name == “Disco”);

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 50

The Single method takes a Lambda expression as a parameter, which specifies that we want a single Genre

object such that its name matches the value we’ve defined. In the case above, we are loading a single Genre

object with a Name value matching Disco.

We’ll take advantage of an Entity Framework feature that allows us to indicate other related entities we want

loaded as well when the Genre object is retrieved. This feature is called Query Result Shaping, and enables us to

reduce the number of times we need to access the database to retrieve all of the information we need. We want

to pre-fetch the Albums for Genre we retrieve, so we’ll update our query to include from

Genres.Include(“Albums”) to indicate that we want related albums as well. This is more efficient, since it will

retrieve both our Genre and Album data in a single database request.

With the explanations out of the way, here’s how our updated Browse controller action looks:

public ActionResult Browse(string genre)
{
 // Retrieve Genre and its Associated Albums from database
 var genreModel = storeDB.Genres.Include("Albums")
 .Single(g => g.Name == genre);

 return View(genreModel);
}

We can now update the Store Browse View to display the albums which are available in each Genre. Open the

view template (found in /Views/Store/Browse.cshtml) and add a bulleted list of Albums as shown below.

@model MvcMusicStore.Models.Genre
@{
 ViewBag.Title = "Browse";
}
<h2>Browsing Genre: @Model.Name</h2>

 @foreach (var album in Model.Albums)
 {

 @album.Title

 }

Running our application and browsing to /Store/Browse?genre=Jazz shows that our results are now being pulled

from the database, displaying all albums in our selected Genre.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 51

We’ll make the same change to our /Store/Details/[id] URL, and replace our dummy data with a database query

which loads an Album whose ID matches the parameter value.

public ActionResult Details(int id)
{
 var album = storeDB.Albums.Find(id);

 return View(album);
}

Running our application and browsing to /Store/Details/1 shows that our results are now being pulled from the

database.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 52

Now that our Store Details page is set up to display an album by the Album ID, let’s update the Browse view to

link to the Details view. We will use Html.ActionLink, exactly as we did to link from Store Index to Store Browse

at the end of the previous section. The complete source for the Browse view appears below.

@model MvcMusicStore.Models.Genre
@{
 ViewBag.Title = "Browse";
}
<h2>Browsing Genre: @Model.Name</h2>

 @foreach (var album in Model.Albums)
 {

 @Html.ActionLink(album.Title, "Details", new { id = album.AlbumId })

 }

We’re now able to browse from our Store page to a Genre page, which lists the available albums, and by clicking

on an album we can view details for that album.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 53

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 54

5. Edit Forms using Scaffolding
In the past chapter, we were loading data from our database and displaying it. In this chapter, we’ll also enable

editing the data.

Creating the StoreManagerController

We’ll begin by creating a new controller called StoreManagerController. For this controller, we will be taking

advantage of the Scaffolding features available in the ASP.NET MVC 3 Tools Update. Set the options for the Add

Controller dialog as shown below.

When you click the Add button, you’ll see that the ASP.NET MVC 3 scaffolding mechanism does a good amount

of work for you:

 It creates the new StoreManagerController with a local Entity Framework variable

 It adds a StoreManager folder to the project’s Views folder

 It adds Create.cshtml, Delete.cshtml, Details.cshtml, Edit.cshtml, and Index.cshtml view, strongly typed

to the Album class

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 55

The new StoreManager controller class includes CRUD (create, read, update, delete) controller actions which

know how to work with the Album model class and use our Entity Framework context for database access.

Modifying a Scaffolded View

It’s important to remember that, while this code was generated for us, it’s standard ASP.NET MVC code, just like

we’ve been writing throughout this tutorial. It’s intended to save you the time you’d spend on writing

boilerplate controller code and creating the strongly typed views manually, but this isn’t the kind of generated

code you may have seen prefaced with dire warnings in comments about how you mustn’t change the code.

This is your code, and you’re expected to change it.

So, let’s start with a quick edit to the StoreManager Index view (/Views/StoreManager/Index.cshtml). This view

will display a table which lists the Albums in our store with Edit / Details / Delete links, and includes the Album’s

public properties. We’ll remove the AlbumArtUrl field, as it’s not very useful in this display. In <table> section of

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 56

the view code, remove the <th> and <td> elements surrounding AlbumArtUrl references, as indicated by the

highlighted lines below:

<table>
 <tr>
 <th>
 Genre
 </th>
 <th>
 Artist
 </th>
 <th>
 Title
 </th>
 <th>
 Price
 </th>
 <th>
 AlbumArtUrl
 </th>
 <th></th>
 </tr>

@foreach (var item in Model) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Genre.Name)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Artist.Name)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.AlbumArtUrl)
 </td>
 <td>
 @Html.ActionLink("Edit", "Edit", new { id=item.AlbumId }) |
 @Html.ActionLink("Details", "Details", new { id=item.AlbumId }) |
 @Html.ActionLink("Delete", "Delete", new { id=item.AlbumId })
 </td>
 </tr>
}

</table>

The modified view code will appear as follows:

@model IEnumerable<MvcMusicStore.Models.Album>

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 57

@{
 ViewBag.Title = "Index";
}

<h2>Index</h2>

<p>
 @Html.ActionLink("Create New", "Create")
</p>
<table>
 <tr>
 <th>
 Genre
 </th>
 <th>
 Artist
 </th>
 <th>
 Title
 </th>
 <th>
 Price
 </th>
 <th></th>
 </tr>

@foreach (var item in Model) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Genre.Name)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Artist.Name)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 @Html.ActionLink("Edit", "Edit", new { id=item.AlbumId }) |
 @Html.ActionLink("Details", "Details", new { id=item.AlbumId }) |
 @Html.ActionLink("Delete", "Delete", new { id=item.AlbumId })
 </td>
 </tr>
}

</table>

A first look at the Store Manager

Now run the application and browse to /StoreManager/. This displays the Store Manager Index we just

modified, showing a list of the albums in the store with links to Edit, Details, and Delete.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 58

Clicking the Edit link displays an edit form with fields for the Album, including dropdowns for Genre and Artist.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 59

Click the “Back to List” link at the bottom, then click on the Details link for an Album. This displays the detail

information for an individual Album.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 60

Again, click the Back to List link, then click on a Delete link. This displays a confirmation dialog, showing the

album details and asking if we’re sure we want to delete it.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 61

Clicking the Delete button at the bottom will delete the album and return you to the Index page, which shows

the album deleted.

We’re not done with the Store Manager, but we have working controller and view code for the CRUD operations

to start from.

Looking at the Store Manager Controller code

The Store Manager Controller contains a good amount of code. Let’s go through this from top to bottom. The

controller includes some standard namespaces for an MVC controller, as well as a reference to our Models

namespace. The controller has a private instance of MusicStoreEntities, used by each of the controller actions

for data access.

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Entity;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using MvcMusicStore.Models;

namespace MvcMusicStore.Controllers
{
 public class StoreManagerController : Controller
 {

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 62

 private MusicStoreEntities db = new MusicStoreEntities();

Store Manager Index and Details actions

The index view retrieves a list of Albums, including each album’s referenced Genre and Artist information, as we

previously saw when working on the Store Browse method. The Index view is following the references to the

linked objects so that it can display each album’s Genre name and Artist name, so the controller is being

efficient and querying for this information in the original request.

//
// GET: /StoreManager/

public ViewResult Index()
{
 var albums = db.Albums.Include(a => a.Genre).Include(a => a.Artist);
 return View(albums.ToList());
}

The StoreManager Controller’s Details controller action works exactly the same as the Store Controller Details

action we wrote previously - it queries for the Album by ID using the Find() method, then returns it to the view.

 //
 // GET: /StoreManager/Details/5

 public ViewResult Details(int id)
 {
 Album album = db.Albums.Find(id);
 return View(album);
 }

The Create Action Methods

The Create action methods are a little different from ones we’ve seen so far, because they handle form input.

When a user first visits /StoreManager/Create/ they will be shown an empty form. This HTML page will contain a

<form> element that contains dropdown and textbox input elements where they can enter the album’s details.

After the user fills in the Album form values, they can press the “Save” button to submit these changes back to

our application to save within the database. When the user presses the “save” button the <form> will perform

an HTTP-POST back to the /StoreManager/Create/ URL and submit the <form> values as part of the HTTP-POST.

ASP.NET MVC allows us to easily split up the logic of these two URL invocation scenarios by enabling us to

implement two separate “Create” action methods within our StoreManagerController class – one to handle the

initial HTTP-GET browse to the /StoreManager/Create/ URL, and the other to handle the HTTP-POST of the

submitted changes.

Passing information to a View using ViewBag

We’ve used the ViewBag earlier in this tutorial, but haven’t talked much about it. The ViewBag allows us to pass

information to the view without using a strongly typed model object. In this case, our Edit HTTP-GET controller

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 63

action needs to pass both a list of Genres and Artists to the form to populate the dropdowns, and the simplest

way to do that is to return them as ViewBag items.

The ViewBag is a dynamic object, meaning that you can type ViewBag.Foo or ViewBag.YourNameHere without

writing code to define those properties. In this case, the controller code uses ViewBag.GenreId and

ViewBag.ArtistId so that the dropdown values submitted with the form will be GenreId and ArtistId, which are

the Album properties they will be setting.

These dropdown values are returned to the form using the SelectList object, which is built just for that purpose.

This is done using code like this:

ViewBag.GenreId = new SelectList(db.Genres, "GenreId", "Name");

As you can see from the action method code, three parameters are being used to create this object:

 The list of items the dropdown will be displaying. Note that this isn’t just a string - we’re passing a list of

Genres.

 The next parameter being passed to the SelectList is the Selected Value. This how the SelectList knows

how to pre-select an item in the list. This will be easier to understand when we look at the Edit form,

which is pretty similar.

 The final parameter is the property to be displayed. In this case, this is indicating that the Genre.Name

property is what will be shown to the user.

With that in mind, then, the HTTP-GET Create action is pretty simple - two SelectLists are added to the ViewBag,

and no model object is passed to the form (since it hasn’t been created yet).

//
// GET: /StoreManager/Create

public ActionResult Create()
{
 ViewBag.GenreId = new SelectList(db.Genres, "GenreId", "Name");
 ViewBag.ArtistId = new SelectList(db.Artists, "ArtistId", "Name");
 return View();
}

HTML Helpers to display the Drop Downs in the Create View

Since we’ve talked about how the drop down values are passed to the view, let’s take a quick look at the view to

see how those values are displayed. In the view code (/Views/StoreManager/Create.cshtml), you’ll see the

following call is made to display the Genre drop down.

@Html.DropDownList("GenreId", String.Empty)

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 64

This is known as an HTML Helper - a utility method which performs a common view task. HTML Helpers are very

useful in keeping our view code concise and readable. The Html.DropDownList helper is provided by ASP.NET

MVC, but as we’ll see later it’s possible to create our own helpers for view code we’ll reuse in our application.

The Html.DropDownList call just needs to be told two things - where to get the list to display, and what value (if

any) should be pre-selected. The first parameter, GenreId, tells the DropDownList to look for a value named

GenreId in either the model or ViewBag. The second parameter is used to indicate the value to show as initially

selected in the drop down list. Since this form is a Create form, there’s no value to be preselected and

String.Empty is passed.

Handling the Posted Form values

As we discussed before, there are two action methods associated with each form. The first handles the HTTP-

GET request and displays the form. The second handles the HTTP-POST request, which contains the submitted

form values. Notice that controller action has an [HttpPost] attribute, which tells ASP.NET MVC that it should

only respond to HTTP-POST requests.

//
// POST: /StoreManager/Create

[HttpPost]
public ActionResult Create(Album album)
{
 if (ModelState.IsValid)
 {
 db.Albums.Add(album);
 db.SaveChanges();
 return RedirectToAction("Index");
 }

 ViewBag.GenreId = new SelectList(db.Genres, "GenreId", "Name", album.GenreId);
 ViewBag.ArtistId = new SelectList(db.Artists, "ArtistId", "Name", album.ArtistId);
 return View(album);
}

This action has four responsibilities:

1. Read the form values

2. Check if the form values pass any validation rules

3. If the form submission is valid, save the data and display the updated list

4. If the form submission is not valid, redisplay the form with validation errors

Reading Form Values with Model Binding

The controller action is processing a form submission that includes values for GenreId and ArtistId (from the

drop down list) and textbox values for Title, Price, and AlbumArtUrl. While it’s possible to directly access form

values, a better approach is to use the Model Binding capabilities built into ASP.NET MVC. When a controller

action takes a model type as a parameter, ASP.NET MVC will attempt to populate an object of that type using

form inputs (as well as route and querystring values). It does this by looking for values whose names match

properties of the model object, e.g. when setting the new Album object’s GenreId value, it looks for an input

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 65

with the name GenreId. When you create views using the standard methods in ASP.NET MVC, the forms will

always be rendered using property names as input field names, so this the field names will just match up.

Validating the Model

The model is validated with a simple call to ModelState.IsValid. We haven’t added any validation rules to our

Album class yet - we’ll do that in a bit - so right now this check doesn’t have much to do. What’s important is

that this ModelStat.IsValid check will adapt to the validation rules we put on our model, so future changes to

validation rules won’t require any updates to the controller action code.

Saving the submitted values

If the form submission passes validation, it’s time to save the values to the database. With Entity Framework,

that just requires adding the model to the Albums collection and calling SaveChanges.

db.Albums.Add(album);
db.SaveChanges();

Entity Framework generates the appropriate SQL commands to persist the value. After saving the data, we

redirect back to the list of Albums so we can see our update. This is done by returning RedirectToAction with the

name of the controller action we want displayed. In this case, that’s the Index method.

Displaying invalid form submissions with Validation Errors

In the case of invalid form input, the dropdown values are added to the ViewBag (as in the HTTP-GET case) and

the bound model values are passed back to the view for display. Validation errors are automatically displayed

using the @Html.ValidationMessageFor HTML Helper.

Testing the Create Form

To test this out, run the application and browse to /StoreManager/Create/ - this will show you the blank form

which was returned by the StoreController Create HTTP-GET method.

Fill in some values and click the Create button to submit the form.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 66

Handling Edits

The Edit action pair (HTTP-GET and HTTP-POST) are very similar to the Create action methods we just looked at.

Since the edit scenario involves working with an existing album, the Edit HTTP-GET method loads the Album

based on the “id” parameter, passed in via the route. This code for retrieving an album by AlbumId is the same

as we’ve previously looked at in the Details controller action. As with the Create / HTTP-GET method, the drop

down values are returned via the ViewBag. This allows us to return an Album as our model object to the view

(which is strongly typed to the Album class) while passing additional data (e.g. a list of Genres) via the ViewBag.

//
// GET: /StoreManager/Edit/5

public ActionResult Edit(int id)
{
 Album album = db.Albums.Find(id);
 ViewBag.GenreId = new SelectList(db.Genres, "GenreId", "Name", album.GenreId);
 ViewBag.ArtistId = new SelectList(db.Artists, "ArtistId", "Name", album.ArtistId);
 return View(album);

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 67

}

The Edit HTTP-POST action is very similar to the Create HTTP-POST action. The only difference is that instead of

adding a new album to the db.Albums collection, we’re finding the current instance of the Album using

db.Entry(album) and setting its state to Modified. This tells Entity Framework that we are modifying an existing

album as opposed to creating a new one.

//
// POST: /StoreManager/Edit/5

[HttpPost]
public ActionResult Edit(Album album)
{
 if (ModelState.IsValid)
 {
 db.Entry(album).State = EntityState.Modified;
 db.SaveChanges();
 return RedirectToAction("Index");
 }
 ViewBag.GenreId = new SelectList(db.Genres, "GenreId", "Name", album.GenreId);
 ViewBag.ArtistId = new SelectList(db.Artists, "ArtistId", "Name", album.ArtistId);
 return View(album);
}

We can test this out by running the application and browsing to /StoreManger/, then clicking the Edit link for an

album.

This displays the Edit form shown by the Edit HTTP-GET method. Fill in some values and click the Save button.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 68

This posts the form, saves the values, and returns us to the Album list, showing that the values were updated.

Handling Deletion

Deletion follows the same pattern as Edit and Create, using one controller action to display the confirmation

form, and another controller action to handle the form submission.

The HTTP-GET Delete controller action is exactly the same as our previous Store Manager Details controller

action.

//
// GET: /StoreManager/Delete/5

public ActionResult Delete(int id)
{
 Album album = db.Albums.Find(id);
 return View(album);
}

We display a form that’s strongly typed to an Album type, using the Delete view content template.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 69

The Delete template shows all the fields for the model, but we can simplify that down quite a bit. Change the

view code in /Views/StoreManager/Delete.cshtml to the following.

@model MvcMusicStore.Models.Album

@{
 ViewBag.Title = "Delete";
}

<h2>Delete Confirmation</h2>

<p>Are you sure you want to delete the album titled
 @Model.Title?
</p>

@using (Html.BeginForm()) {
 <p>
 <input type="submit" value="Delete" />
 </p>
 <p>
 @Html.ActionLink("Back to List", "Index")
 </p>

}

This displays a simplified Delete confirmation.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 70

Clicking the Delete button causes the form to be posted back to the server, which executes the DeleteConfirmed

action.

//
// POST: /StoreManager/Delete/5

[HttpPost, ActionName("Delete")]
public ActionResult DeleteConfirmed(int id)
{
 Album album = db.Albums.Find(id);
 db.Albums.Remove(album);
 db.SaveChanges();
 return RedirectToAction("Index");
}

Our HTTP-POST Delete Controller Action takes the following actions:

1. Loads the Album by ID

2. Deletes it the album and save changes

3. Redirects to the Index, showing that the Album was removed from the list

To test this, run the application and browse to /StoreManager. Select an album from the list and click the Delete

link.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 71

This displays our Delete confirmation screen.

Clicking the Delete button removes the album and returns us to the Store Manager Index page, which shows

that the album has been deleted.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 72

Using a custom HTML Helper to truncate text

We’ve got one potential issue with our Store Manager Index page. Our Album Title and Artist Name properties

can both be long enough that they could throw off our table formatting. We’ll create a custom HTML Helper to

allow us to easily truncate these and other properties in our Views.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 73

Razor’s @helper syntax has made it pretty easy to create your own helper functions for use in your views. Open

the /Views/StoreManager/Index.cshtml view and add the following code directly after the @model line.

@helper Truncate(string input, int length)
{
 if (input.Length <= length) {
 @input
 } else {
 @input.Substring(0, length)<text>...</text>
 }
}

This helper method takes a string and a maximum length to allow. If the text supplied is shorter than the length

specified, the helper outputs it as-is. If it is longer, then it truncates the text and renders “…” for the remainder.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 74

Now we can use our Truncate helper to ensure that both the Album Title and Artist Name properties are less

than 25 characters. The complete view code using our new Truncate helper appears below.

@model IEnumerable<MvcMusicStore.Models.Album>

@helper Truncate(string input, int length)
{
 if (input.Length <= length) {
 @input
 } else {
 @input.Substring(0, length)<text>...</text>
 }
}

@{
 ViewBag.Title = "Index";
}

<h2>Index</h2>

<p>
 @Html.ActionLink("Create New", "Create")
</p>
<table>
 <tr>
 <th>
 Genre
 </th>
 <th>
 Artist
 </th>
 <th>
 Title
 </th>
 <th>
 Price
 </th>
 <th></th>
 </tr>

@foreach (var item in Model) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Genre.Name)
 </td>
 <td>
 @Truncate(item.Artist.Name, 25)
 </td>
 <td>
 @Truncate(item.Title, 25)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 75

 <td>
 @Html.ActionLink("Edit", "Edit", new { id=item.AlbumId }) |
 @Html.ActionLink("Details", "Details", new { id=item.AlbumId }) |
 @Html.ActionLink("Delete", "Delete", new { id=item.AlbumId })
 </td>
 </tr>
}

</table>

Now when we browse the /StoreManager/ URL, the albums and titles are kept below our maximum lengths.

Note: This shows the simple case of creating and using a helper in one view. To learn more about creating

helpers that you can use throughout your site, see my blog post: http://bit.ly/mvc3-helper-options

http://bit.ly/mvc3-helper-options

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 76

6. Using Data Annotations for Model Validation
We have a major issue with our Create and Edit forms: they’re not doing any validation. We can do things like

leave required fields blank or type letters in the Price field, and the first error we’ll see is from the database.

We can easily add validation to our application by adding Data Annotations to our model classes. Data

Annotations allow us to describe the rules we want applied to our model properties, and ASP.NET MVC will take

care of enforcing them and displaying appropriate messages to our users.

 Adding Validation to our Album Forms

We’ll use the following Data Annotation attributes:

 Required – Indicates that the property is a required field

 DisplayName – Defines the text we want used on form fields and validation messages

 StringLength – Defines a maximum length for a string field

 Range – Gives a maximum and minimum value for a numeric field

 Bind – Lists fields to exclude or include when binding parameter or form values to model properties

 ScaffoldColumn – Allows hiding fields from editor forms

Note: For more information on Model Validation using Data Annotation attributes, see the MSDN documentation

at http://go.microsoft.com/fwlink/?LinkId=159063

Open the Album class and add the following using statements to the top.

using System.ComponentModel;
using System.ComponentModel.DataAnnotations;
using System.Web.Mvc;

Next, update the properties to add display and validation attributes as shown below.

namespace MvcMusicStore.Models
{
 [Bind(Exclude = "AlbumId")]
 public class Album
 {
 [ScaffoldColumn(false)]
 public int AlbumId { get; set; }

 [DisplayName("Genre")]
 public int GenreId { get; set; }

 [DisplayName("Artist")]
 public int ArtistId { get; set; }

 [Required(ErrorMessage = "An Album Title is required")]
 [StringLength(160)]
 public string Title { get; set; }

 [Required(ErrorMessage = "Price is required")]
 [Range(0.01, 100.00,
 ErrorMessage = "Price must be between 0.01 and 100.00")]
 public decimal Price { get; set; }

http://go.microsoft.com/fwlink/?LinkId=159063

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 77

 [DisplayName("Album Art URL")]
 [StringLength(1024)]
 public string AlbumArtUrl { get; set; }

 public virtual Genre Genre { get; set; }
 public virtual Artist Artist { get; set; }

 }
}

While we’re there, we’ve also changed the Genre and Artist to virtual properties. This allows Entity Framework

to lazy-load them as necessary.

public virtual Genre Genre { get; set; }
public virtual Artist Artist { get; set; }

After having added these attributes to our Album model, our Create and Edit screen immediately begin

validating fields and using the Display Names we’ve chosen (e.g. Album Art Url instead of AlbumArtUrl). Run the

application and browse to /StoreManager/Create.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 78

Next, we’ll break some validation rules. Enter a price of 0 and leave the Title blank. When we click on the Create

button, we will see the form displayed with validation error messages showing which fields did not meet the

validation rules we have defined.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 79

Testing the Client-Side Validation

Server-side validation is very important from an application perspective, because users can circumvent client-

side validation. However, webpage forms which only implement server-side validation exhibit three significant

problems.

1. The user has to wait for the form to be posted, validated on the server, and for the response to be sent

to their browser.

2. The user doesn’t get immediate feedback when they correct a field so that it now passes the validation

rules.

3. We are wasting server resources to perform validation logic instead of leveraging the user’s browser.

Fortunately, the ASP.NET MVC 3 scaffold templates have client-side validation built in, requiring no additional

work whatsoever.

Typing a single letter in the Title field satisfies the validation requirements, so the validation message is

immediately removed.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 80

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 81

7. Membership and Authorization
Our Store Manager controller is currently accessible to anyone visiting our site. Let’s change this to restrict

permission to site administrators.

Adding the AccountController and Views

One difference between the full ASP.NET MVC 3 Web Application template and the ASP.NET MVC 3 Empty Web

Application template is that the empty template doesn’t include an Account Controller. We’ll add an Account

Controller by copying a few files from a new ASP.NET MVC application created from the full ASP.NET MVC 3 Web

Application template.

The MvcMusicStore-Assets.zip download - which included our site design files from the beginning of the tutorial

- has all the AccountController files you’ll need to add located in a folder named Code. Copy the following files

into the same directories in our project:

1. Copy AccountController.cs in the Controllers directory

2. Copy AccountModels.cs in the Models directory

3. Create an Account directory inside the Views directory and copy all four views in

Change the namespace for the Controller and Model classes so they begin with MvcMusicStore. The

AccountController class should use the MvcMusicStore.Controllers namespace, and the AccountModels class

should use the MvcMusicStore.Models namespace.

Note: If you are copying these files from an empty website rather than the Assets zip, you will need to update the

namespaces to match MvcMusicStore.Controllers and MvcMusicStore.Models.

The updated solution should look like the following:

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 82

Adding an Administrative User with the ASP.NET Configuration site

Before we require Authorization in our website, we’ll need to create a user with access. The easiest way to

create a user is to use the built-in ASP.NET Configuration website.

Launch the ASP.NET Configuration website by clicking following the icon in the Solution Explorer.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 83

This launches a configuration website. Click on the Security tab on the home screen, then click the “Enable

roles” link in the center of the screen.

Click the “Create or Manage roles” link.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 84

Enter “Administrator” as the role name and press the Add Role button.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 85

Click the Back button, then click on the Create user link on the left side.

Fill in the user information fields on the left using the following information:

Field Value

User Name Administrator

Password password123!

Confirm Password password123!

E-mail (any e-mail address will work)

Security Question (whatever you like)

Security Answer (whatever you like)

Note: You can of course use any password you’d like. The above password is shown as an example, and is

assumed in the support forums on CodePlex. The default password security settings require a password that is 7

characters long and contains one non-alphanumeric character.

Select the Administrator role for this user, and click the Create User button.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 86

At this point, you should see a message indicating that the user was created successfully.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 87

You can now close the browser window.

Role-based Authorization
Now we can restrict access to the StoreManagerController using the [Authorize] attribute, specifying that the

user must be in the Administrator role to access any controller action in the class.

[Authorize(Roles = "Administrator")]
public class StoreManagerController : Controller
{
 // Controller code here
}

Note: The [Authorize] attribute can be placed on specific action methods as well as at the Controller class level.

Now browsing to /StoreManager brings up a Log On dialog:

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 88

After logging on with our new Administrator account, we’re able to go to the Album Edit screen as before.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 89

8. Shopping Cart with Ajax Updates
We’ll allow users to place albums in their cart without registering, but they’ll need to register as guests to

complete checkout. The shopping and checkout process will be separated into two controllers: a ShoppingCart

Controller which allows anonymously adding items to a cart, and a Checkout Controller which handles the

checkout process. We’ll start with the Shopping Cart in this section, then build the Checkout process in the

following section.

Adding the Cart, Order, and OrderDetail model classes

Our Shopping Cart and Checkout processes will make use of some new classes. Right-click the Models folder and

add a Cart class (Cart.cs) with the following code.

using System.ComponentModel.DataAnnotations;

namespace MvcMusicStore.Models
{
 public class Cart
 {
 [Key]
 public int RecordId { get; set; }
 public string CartId { get; set; }
 public int AlbumId { get; set; }
 public int Count { get; set; }
 public System.DateTime DateCreated { get; set; }

 public virtual Album Album { get; set; }
 }
}

This class is pretty similar to others we’ve used so far, with the exception of the *Key+ attribute for the RecordId

property. Our Cart items will have a string identifier named CartID to allow anonymous shopping, but the table

includes an integer primary key named RecordId. By convention, Entity Framework Code-First expects that the

primary key for a table named Cart will be either CartId or ID, but we can easily override that via annotations or

code if we want. This is an example of how we can use the simple conventions in Entity Framework Code-First

when they suit us, but we’re not constrained by them when they don’t.

Next, add an Order class (Order.cs) with the following code.

using System.Collections.Generic;

namespace MvcMusicStore.Models
{
 public partial class Order
 {
 public int OrderId { get; set; }
 public string Username { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Address { get; set; }
 public string City { get; set; }

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 90

 public string State { get; set; }
 public string PostalCode { get; set; }
 public string Country { get; set; }
 public string Phone { get; set; }
 public string Email { get; set; }
 public decimal Total { get; set; }
 public System.DateTime OrderDate { get; set; }

 public List<OrderDetail> OrderDetails { get; set; }
 }
}

This class tracks summary and delivery information for an order. It won’t compile yet, because it has an

OrderDetails navigation property which depends on a class we haven’t created yet. Let’s fix that now by adding

a class named OrderDetail.cs, adding the following code.

namespace MvcMusicStore.Models
{
 public class OrderDetail
 {
 public int OrderDetailId { get; set; }
 public int OrderId { get; set; }
 public int AlbumId { get; set; }
 public int Quantity { get; set; }
 public decimal UnitPrice { get; set; }

 public virtual Album Album { get; set; }
 public virtual Order Order { get; set; }
 }
}

We’ll make one last update to our MusicStoreEntities class to include DbSets which expose those new Model

classes, also including a DbSet<Artist>. The updated MusicStoreEntities class appears as below.

using System.Data.Entity;

namespace MvcMusicStore.Models
{
 public class MusicStoreEntities : DbContext
 {
 public DbSet<Album> Albums { get; set; }
 public DbSet<Genre> Genres { get; set; }
 public DbSet<Artist> Artists { get; set; }
 public DbSet<Cart> Carts { get; set; }
 public DbSet<Order> Orders { get; set; }
 public DbSet<OrderDetail> OrderDetails { get; set; }
 }
}

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 91

Managing the Shopping Cart business logic

Next, we’ll create the ShoppingCart class in the Models folder. The ShoppingCart model handles data access to

the Cart table. Additionally, it will handle the business logic to for adding and removing items from the shopping

cart.

Since we don’t want to require users to sign up for an account just to add items to their shopping cart, we will

assign users a temporary unique identifier (using a GUID, or globally unique identifier) when they access the

shopping cart. We’ll store this ID using the ASP.NET Session class.

Note: The ASP.NET Session is a convenient place to store user-specific information which will expire after they

leave the site. While misuse of session state can have performance implications on larger sites, our light use will

work well for demonstration purposes.

The ShoppingCart class exposes the following methods:

AddToCart takes an Album as a parameter and adds it to the user’s cart. Since the Cart table tracks quantity for

each album, it includes logic to create a new row if needed or just increment the quantity if the user has already

ordered one copy of the album.

RemoveFromCart takes an Album ID and removes it from the user’s cart. If the user only had one copy of the

album in their cart, the row is removed.

EmptyCart removes all items from a user’s shopping cart.

GetCartItems retrieves a list of CartItems for display or processing.

GetCount retrieves a the total number of albums a user has in their shopping cart.

GetTotal calculates the total cost of all items in the cart.

CreateOrder converts the shopping cart to an order during the checkout phase.

GetCart is a static method which allows our controllers to obtain a cart object. It uses the GetCartId method to

handle reading the CartId from the user’s session. The GetCartId method requires the HttpContextBase so that it

can read the user’s CartId from user’s session.

Here’s the complete ShoppingCart class:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;

namespace MvcMusicStore.Models
{
 public partial class ShoppingCart
 {
 MusicStoreEntities storeDB = new MusicStoreEntities();

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 92

 string ShoppingCartId { get; set; }

 public const string CartSessionKey = "CartId";

 public static ShoppingCart GetCart(HttpContextBase context)
 {
 var cart = new ShoppingCart();
 cart.ShoppingCartId = cart.GetCartId(context);
 return cart;
 }

 // Helper method to simplify shopping cart calls
 public static ShoppingCart GetCart(Controller controller)
 {
 return GetCart(controller.HttpContext);
 }

 public void AddToCart(Album album)
 {
 // Get the matching cart and album instances
 var cartItem = storeDB.Carts.SingleOrDefault(

c => c.CartId == ShoppingCartId
&& c.AlbumId == album.AlbumId);

 if (cartItem == null)
 {
 // Create a new cart item if no cart item exists
 cartItem = new Cart
 {
 AlbumId = album.AlbumId,
 CartId = ShoppingCartId,
 Count = 1,
 DateCreated = DateTime.Now
 };

 storeDB.Carts.Add(cartItem);
 }
 else
 {
 // If the item does exist in the cart, then add one to the quantity
 cartItem.Count++;
 }

 // Save changes
 storeDB.SaveChanges();
 }

 public int RemoveFromCart(int id)
 {
 // Get the cart
 var cartItem = storeDB.Carts.Single(

cart => cart.CartId == ShoppingCartId
&& cart.RecordId == id);

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 93

 int itemCount = 0;

 if (cartItem != null)
 {
 if (cartItem.Count > 1)
 {
 cartItem.Count--;
 itemCount = cartItem.Count;
 }
 else
 {
 storeDB.Carts.Remove(cartItem);
 }

 // Save changes
 storeDB.SaveChanges();
 }

 return itemCount;
 }

 public void EmptyCart()
 {
 var cartItems = storeDB.Carts.Where(cart => cart.CartId == ShoppingCartId);

 foreach (var cartItem in cartItems)
 {
 storeDB.Carts.Remove(cartItem);
 }

 // Save changes
 storeDB.SaveChanges();
 }

 public List<Cart> GetCartItems()
 {
 return storeDB.Carts.Where(cart => cart.CartId == ShoppingCartId).ToList();
 }

 public int GetCount()
 {
 // Get the count of each item in the cart and sum them up
 int? count = (from cartItems in storeDB.Carts
 where cartItems.CartId == ShoppingCartId
 select (int?)cartItems.Count).Sum();

 // Return 0 if all entries are null
 return count ?? 0;
 }

 public decimal GetTotal()
 {
 // Multiply album price by count of that album to get
 // the current price for each of those albums in the cart
 // sum all album price totals to get the cart total

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 94

 decimal? total = (from cartItems in storeDB.Carts
 where cartItems.CartId == ShoppingCartId
 select (int?)cartItems.Count * cartItems.Album.Price).Sum();
 return total ?? decimal.Zero;
 }

 public int CreateOrder(Order order)
 {
 decimal orderTotal = 0;

 var cartItems = GetCartItems();

 // Iterate over the items in the cart, adding the order details for each
 foreach (var item in cartItems)
 {
 var orderDetail = new OrderDetail
 {
 AlbumId = item.AlbumId,
 OrderId = order.OrderId,
 UnitPrice = item.Album.Price,
 Quantity = item.Count
 };

 // Set the order total of the shopping cart
 orderTotal += (item.Count * item.Album.Price);

 storeDB.OrderDetails.Add(orderDetail);

 }

 // Set the order's total to the orderTotal count
 order.Total = orderTotal;

 // Save the order
 storeDB.SaveChanges();

 // Empty the shopping cart
 EmptyCart();

 // Return the OrderId as the confirmation number
 return order.OrderId;
 }

 // We're using HttpContextBase to allow access to cookies.
 public string GetCartId(HttpContextBase context)
 {
 if (context.Session[CartSessionKey] == null)
 {
 if (!string.IsNullOrWhiteSpace(context.User.Identity.Name))
 {
 context.Session[CartSessionKey] = context.User.Identity.Name;
 }
 else
 {
 // Generate a new random GUID using System.Guid class

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 95

 Guid tempCartId = Guid.NewGuid();

 // Send tempCartId back to client as a cookie
 context.Session[CartSessionKey] = tempCartId.ToString();
 }
 }

 return context.Session[CartSessionKey].ToString();
 }

 // When a user has logged in, migrate their shopping cart to
 // be associated with their username
 public void MigrateCart(string userName)
 {
 var shoppingCart = storeDB.Carts.Where(c => c.CartId == ShoppingCartId);

 foreach (Cart item in shoppingCart)
 {
 item.CartId = userName;
 }
 storeDB.SaveChanges();
 }
 }
}

ViewModels

Our Shopping Cart Controller will need to communicate some complex information to its views which doesn’t

map cleanly to our Model objects. We don’t want to modify our Models to suit our views; Model classes should

represent our domain, not the user interface. One solution would be to pass the information to our Views using

the ViewBag class, as we did with the Store Manager dropdown information, but passing a lot of information via

ViewBag gets hard to manage.

A solution to this is to use the ViewModel pattern. When using this pattern we create strongly-typed classes that

are optimized for our specific view scenarios, and which expose properties for the dynamic values/content

needed by our view templates. Our controller classes can then populate and pass these view-optimized classes

to our view template to use. This enables type-safety, compile-time checking, and editor IntelliSense within

view templates.

We’ll create two View Models for use in our Shopping Cart controller: the ShoppingCartViewModel will hold the

contents of the user’s shopping cart, and the ShoppingCartRemoveViewModel will be used to display

confirmation information when a user removes something from their cart.

Let’s create a new ViewModels folder in the root of our project to keep things organized. Right-click the project,

select Add / New Folder.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 96

Name the folder ViewModels.

Next, add the ShoppingCartViewModel class in the ViewModels folder. It has two properties: a list of Cart items,

and a decimal value to hold the total price for all items in the cart.

using System.Collections.Generic;
using MvcMusicStore.Models;

namespace MvcMusicStore.ViewModels
{
 public class ShoppingCartViewModel

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 97

 {
 public List<Cart> CartItems { get; set; }
 public decimal CartTotal { get; set; }
 }
}

Now add the ShoppingCartRemoveViewModel to the ViewModels folder, with the following four properties.

namespace MvcMusicStore.ViewModels
{
 public class ShoppingCartRemoveViewModel
 {
 public string Message { get; set; }
 public decimal CartTotal { get; set; }
 public int CartCount { get; set; }
 public int ItemCount { get; set; }
 public int DeleteId { get; set; }
 }
}

The Shopping Cart Controller
The Shopping Cart controller has three main purposes: adding items to a cart, removing items from the cart, and

viewing items in the cart. It will make use of the three classes we just created: ShoppingCartViewModel,

ShoppingCartRemoveViewModel, and ShoppingCart. As in the StoreController and StoreManagerController,

we’ll add a field to hold an instance of MusicStoreEntities.

Add a new Shopping Cart controller to the project using the Empty controller template.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 98

Here’s the complete ShoppingCart Controller. The Index and Add Controller actions should look very familiar.

The Remove and CartSummary controller actions handle two special cases, which we’ll discuss in the following

section.

using System.Linq;
using System.Web.Mvc;
using MvcMusicStore.Models;
using MvcMusicStore.ViewModels;

namespace MvcMusicStore.Controllers
{
 public class ShoppingCartController : Controller
 {
 MusicStoreEntities storeDB = new MusicStoreEntities();

 //
 // GET: /ShoppingCart/

 public ActionResult Index()
 {
 var cart = ShoppingCart.GetCart(this.HttpContext);

 // Set up our ViewModel
 var viewModel = new ShoppingCartViewModel
 {
 CartItems = cart.GetCartItems(),
 CartTotal = cart.GetTotal()
 };

 // Return the view
 return View(viewModel);
 }

 //
 // GET: /Store/AddToCart/5

 public ActionResult AddToCart(int id)
 {

 // Retrieve the album from the database
 var addedAlbum = storeDB.Albums
 .Single(album => album.AlbumId == id);

 // Add it to the shopping cart
 var cart = ShoppingCart.GetCart(this.HttpContext);

 cart.AddToCart(addedAlbum);

 // Go back to the main store page for more shopping
 return RedirectToAction("Index");
 }

 //
 // AJAX: /ShoppingCart/RemoveFromCart/5

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 99

 [HttpPost]
 public ActionResult RemoveFromCart(int id)
 {
 // Remove the item from the cart
 var cart = ShoppingCart.GetCart(this.HttpContext);

 // Get the name of the album to display confirmation
 string albumName = storeDB.Carts
 .Single(item => item.RecordId == id).Album.Title;

 // Remove from cart
 int itemCount = cart.RemoveFromCart(id);

 // Display the confirmation message
 var results = new ShoppingCartRemoveViewModel
 {
 Message = Server.HtmlEncode(albumName) +
 " has been removed from your shopping cart.",
 CartTotal = cart.GetTotal(),
 CartCount = cart.GetCount(),
 ItemCount = itemCount,
 DeleteId = id
 };

 return Json(results);
 }

 //
 // GET: /ShoppingCart/CartSummary

 [ChildActionOnly]
 public ActionResult CartSummary()
 {
 var cart = ShoppingCart.GetCart(this.HttpContext);

 ViewData["CartCount"] = cart.GetCount();

 return PartialView("CartSummary");
 }
 }
}

Ajax Updates with jQuery

We’ll next create a Shopping Cart Index page that is strongly typed to the ShoppingCartViewModel and uses the

List View template using the same method as before.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 100

However, instead of using an Html.ActionLink to remove items from the cart, we’ll use jQuery to “wire up” the

click event for all links in this view which have the HTML class RemoveLink. Rather than posting the form, this

click event handler will just make an AJAX callback to our RemoveFromCart controller action. The

RemoveFromCart returns a JSON serialized result, which is automatically passed to the JavaScript method

specified in our AjaxOptions OnSuccess parameter – handleUpdate in this case. The handleUpdate Javascript

function parses the JSON results and performs four quick updates to the page using jQuery:

1. Removes the deleted album from the list

2. Updates the cart count in the header

3. Displays an update message to the user

4. Updates the cart total price

Since the remove scenario is being handled by an Ajax callback within the Index view, we don’t need an

additional view for RemoveFromCart action. Here is the complete code for the /ShoppingCart/Index view:

@model MvcMusicStore.ViewModels.ShoppingCartViewModel
@{
 ViewBag.Title = "Shopping Cart";

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 101

}
<script src="/Scripts/jquery-1.4.4.min.js" type="text/javascript"></script>
<script type="text/javascript">
 $(function () {
 // Document.ready -> link up remove event handler
 $(".RemoveLink").click(function () {
 // Get the id from the link
 var recordToDelete = $(this).attr("data-id");

 if (recordToDelete != '') {

 // Perform the ajax post
 $.post("/ShoppingCart/RemoveFromCart", { "id": recordToDelete },
 function (data) {
 // Successful requests get here
 // Update the page elements
 if (data.ItemCount == 0) {
 $('#row-' + data.DeleteId).fadeOut('slow');
 } else {
 $('#item-count-' + data.DeleteId).text(data.ItemCount);
 }

 $('#cart-total').text(data.CartTotal);
 $('#update-message').text(data.Message);
 $('#cart-status').text('Cart (' + data.CartCount + ')');
 });
 }
 });

 });

 function handleUpdate() {
 // Load and deserialize the returned JSON data
 var json = context.get_data();
 var data = Sys.Serialization.JavaScriptSerializer.deserialize(json);

 // Update the page elements
 if (data.ItemCount == 0) {
 $('#row-' + data.DeleteId).fadeOut('slow');
 } else {
 $('#item-count-' + data.DeleteId).text(data.ItemCount);
 }

 $('#cart-total').text(data.CartTotal);
 $('#update-message').text(data.Message);
 $('#cart-status').text('Cart (' + data.CartCount + ')');
 }
</script>
<h3>
 Review your cart:
</h3>
<p class="button">
 @Html.ActionLink("Checkout >>", "AddressAndPayment", "Checkout")
</p>

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 102

<div id="update-message">
</div>
<table>
 <tr>
 <th>
 Album Name
 </th>
 <th>
 Price (each)
 </th>
 <th>
 Quantity
 </th>
 <th></th>
 </tr>
 @foreach (var item in Model.CartItems)
 {
 <tr id="row-@item.RecordId">
 <td>
 @Html.ActionLink(item.Album.Title, "Details", "Store", new { id =
item.AlbumId }, null)
 </td>
 <td>
 @item.Album.Price
 </td>
 <td id="item-count-@item.RecordId">
 @item.Count
 </td>
 <td>
 Remove from
cart
 </td>
 </tr>
 }
 <tr>
 <td>
 Total
 </td>
 <td>
 </td>
 <td>
 </td>
 <td id="cart-total">
 @Model.CartTotal
 </td>
 </tr>
</table>

In order to test this out, we need to be able to add items to our shopping cart. We’ll update our Store Details

view to include an “Add to cart” button. While we’re at it, we can include some of the Album additional

information which we’ve added since we last updated this view: Genre, Artist, Price, and Album Art. The

updated Store Details view code appears as shown below.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 103

@model MvcMusicStore.Models.Album

@{
 ViewBag.Title = "Album - " + Model.Title;
}

<h2>@Model.Title</h2>

<p>

</p>

<div id="album-details">
 <p>
 Genre:
 @Model.Genre.Name
 </p>
 <p>
 Artist:
 @Model.Artist.Name
 </p>
 <p>
 Price:
 @String.Format("{0:F}", Model.Price)
 </p>
 <p class="button">
 @Html.ActionLink("Add to cart", "AddToCart",
 "ShoppingCart", new { id = Model.AlbumId }, "")
 </p>
</div>

Now we can click through the store and test adding and removing Albums to and from our shopping cart. Run

the application and browse to the Store Index.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 104

Next, click on a Genre to view a list of albums.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 105

Clicking on an Album title now shows our updated Album Details view, including the “Add to cart” button.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 106

Clicking the “Add to cart” button shows our Shopping Cart Index view with the shopping cart summary list.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 107

After loading up your shopping cart, you can click on the Remove from cart link to see the Ajax update to your

shopping cart.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 108

We’ve built out a working shopping cart which allows unregistered users to add items to their cart. In the

following section, we’ll allow them to register and complete the checkout process.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 109

9. Registration and Checkout

In this section, we will be creating a CheckoutController which will collect the shopper’s address and payment

information. We will require users to register with our site prior to checking out, so this controller will require

authorization.

Users will navigate to the checkout process from their shopping cart by clicking the “Checkout” button.

If the user is not logged in, they will be prompted to.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 110

Upon successful login, the user is then shown the Address and Payment view.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 111

Once they have filled the form and submitted the order, they will be shown the order confirmation screen.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 112

Attempting to view either a non-existent order or an order that doesn’t belong to you will show the Error view.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 113

Migrating the Shopping Cart

While the shopping process is anonymous, when the user clicks on the Checkout button, they will be required to

register and login. Users will expect that we will maintain their shopping cart information between visits, so we

will need to associate the shopping cart information with a user when they complete registration or login.

This is actually very simple to do, as our ShoppingCart class already has a method which will associate all the

items in the current cart with a username. We will just need to call this method when a user completes

registration or login.

Open the AccountController class that we added when we were setting up Membership and Authorization. Add

a using statement referencing MvcMusicStore.Models, then add the following MigrateShoppingCart method:

private void MigrateShoppingCart(string UserName)
{
 // Associate shopping cart items with logged-in user
 var cart = ShoppingCart.GetCart(this.HttpContext);

 cart.MigrateCart(UserName);
 Session[ShoppingCart.CartSessionKey] = UserName;
}

Next, modify the LogOn post action to call MigrateShoppingCart after the user has been validated, as shown

below:

//
// POST: /Account/LogOn

[HttpPost]
public ActionResult LogOn(LogOnModel model, string returnUrl)
{
 if (ModelState.IsValid)
 {
 if (Membership.ValidateUser(model.UserName, model.Password))
 {
 MigrateShoppingCart(model.UserName);

 FormsAuthentication.SetAuthCookie(model.UserName, model.RememberMe);
 if (Url.IsLocalUrl(returnUrl) && returnUrl.Length > 1 &&
returnUrl.StartsWith("/")
 && !returnUrl.StartsWith("//") && !returnUrl.StartsWith("/\\"))
 {
 return Redirect(returnUrl);
 }
 else
 {
 return RedirectToAction("Index", "Home");
 }
 }
 else
 {
 ModelState.AddModelError("", "The user name or password provided is
incorrect.");

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 114

 }
 }

 // If we got this far, something failed, redisplay form
 return View(model);
}

Make the same change to the Register post action, immediately after the user account is successfully created:

//
// POST: /Account/Register

[HttpPost]
public ActionResult Register(RegisterModel model)
{
 if (ModelState.IsValid)
 {
 // Attempt to register the user
 MembershipCreateStatus createStatus;
 Membership.CreateUser(model.UserName, model.Password, model.Email,
 "question", "answer", true, null, out createStatus);

 if (createStatus == MembershipCreateStatus.Success)
 {
 MigrateShoppingCart(model.UserName);

 FormsAuthentication.SetAuthCookie(model.UserName, false /*
createPersistentCookie */);
 return RedirectToAction("Index", "Home");
 }
 else
 {
 ModelState.AddModelError("", ErrorCodeToString(createStatus));
 }
 }

 // If we got this far, something failed, redisplay form
 return View(model);
}

That’s it - now an anonymous shopping cart will be automatically transferred to a user account upon successful

registration or login.

Creating the CheckoutController

Right-click on the Controllers folder and add a new Controller to the project named CheckoutController using

the Empty controller template.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 115

First, add the Authorize attribute above the Controller class declaration to require users to register before

checkout:

namespace MvcMusicStore.Controllers
{
 [Authorize]
 public class CheckoutController : Controller

Note: This is similar to the change we previously made to the StoreManagerController, but in that case the

Authorize attribute required that the user be in an Administrator role. In the Checkout Controller, we’re requiring

the user be logged in but aren’t requiring that they be administrators.

For the sake of simplicity, we won’t be dealing with payment information in this tutorial. Instead, we are

allowing users to check out using a promotional code. We will store this promotional code using a constant

named PromoCode.

As in the StoreController, we’ll declare a field to hold an instance of the MusicStoreEntities class, named

storeDB. In order to make use of the MusicStoreEntities class, we will need to add a using statement for the

MvcMusicStore.Models namespace. The top of our Checkout controller appears below.

using System;
using System.Linq;
using System.Web.Mvc;
using MvcMusicStore.Models;

namespace MvcMusicStore.Controllers

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 116

{
 [Authorize]
 public class CheckoutController : Controller
 {
 MusicStoreEntities storeDB = new MusicStoreEntities();
 const string PromoCode = "FREE";

The CheckoutController will have the following controller actions:

AddressAndPayment (GET method) will display a form to allow the user to enter their information.

AddressAndPayment (POST method) will validate the input and process the order.

Complete will be shown after a user has successfully finished the checkout process. This view will include the

user’s order number, as confirmation.

First, let’s rename the Index controller action (which was generated when we created the controller) to

AddressAndPayment. This controller action just displays the checkout form, so it doesn’t require any model

information.

//
// GET: /Checkout/AddressAndPayment

public ActionResult AddressAndPayment()
{
 return View();
}

Our AddressAndPayment POST method will follow the same pattern we used in the StoreManagerController: it

will try to accept the form submission and complete the order, and will re-display the form if it fails.

After validating the form input meets our validation requirements for an Order, we will check the PromoCode

form value directly. Assuming everything is correct, we will save the updated information with the order, tell the

ShoppingCart object to complete the order process, and redirect to the Complete action.

//
// POST: /Checkout/AddressAndPayment

[HttpPost]
public ActionResult AddressAndPayment(FormCollection values)
{
 var order = new Order();
 TryUpdateModel(order);

 try
 {
 if (string.Equals(values["PromoCode"], PromoCode,
 StringComparison.OrdinalIgnoreCase) == false)
 {
 return View(order);
 }

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 117

 else
 {
 order.Username = User.Identity.Name;
 order.OrderDate = DateTime.Now;

 //Save Order
 storeDB.Orders.Add(order);
 storeDB.SaveChanges();

 //Process the order
 var cart = ShoppingCart.GetCart(this.HttpContext);
 cart.CreateOrder(order);

 return RedirectToAction("Complete",
 new { id = order.OrderId });
 }

 }
 catch
 {
 //Invalid - redisplay with errors
 return View(order);
 }
}

Upon successful completion of the checkout process, users will be redirected to the Complete controller action.

This action will perform a simple check to validate that the order does indeed belong to the logged-in user

before showing the order number as a confirmation.

//
// GET: /Checkout/Complete

public ActionResult Complete(int id)
{
 // Validate customer owns this order
 bool isValid = storeDB.Orders.Any(
 o => o.OrderId == id &&
 o.Username == User.Identity.Name);

 if (isValid)
 {
 return View(id);
 }
 else
 {
 return View("Error");
 }
}

Note: The Error view was automatically created for us in the /Views/Shared folder when we began the project.

The complete CheckoutController code is as follows:

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 118

using System;
using System.Linq;
using System.Web.Mvc;
using MvcMusicStore.Models;

namespace MvcMusicStore.Controllers
{
 [Authorize]
 public class CheckoutController : Controller
 {
 MusicStoreEntities storeDB = new MusicStoreEntities();
 const string PromoCode = "FREE";

 //
 // GET: /Checkout/AddressAndPayment

 public ActionResult AddressAndPayment()
 {
 return View();
 }

 //
 // POST: /Checkout/AddressAndPayment

 [HttpPost]
 public ActionResult AddressAndPayment(FormCollection values)
 {
 var order = new Order();
 TryUpdateModel(order);

 try
 {
 if (string.Equals(values["PromoCode"], PromoCode,
 StringComparison.OrdinalIgnoreCase) == false)
 {
 return View(order);
 }
 else
 {
 order.Username = User.Identity.Name;
 order.OrderDate = DateTime.Now;

 //Save Order
 storeDB.Orders.Add(order);
 storeDB.SaveChanges();

 //Process the order
 var cart = ShoppingCart.GetCart(this.HttpContext);
 cart.CreateOrder(order);

 return RedirectToAction("Complete",
 new { id = order.OrderId });
 }

 }

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 119

 catch
 {
 //Invalid - redisplay with errors
 return View(order);
 }
 }

 //
 // GET: /Checkout/Complete

 public ActionResult Complete(int id)
 {
 // Validate customer owns this order
 bool isValid = storeDB.Orders.Any(
 o => o.OrderId == id &&
 o.Username == User.Identity.Name);

 if (isValid)
 {
 return View(id);
 }
 else
 {
 return View("Error");
 }
 }
 }
}

Adding the AddressAndPayment view

Now, let’s create the AddressAndPayment view. Right-click on one of the the AddressAndPayment controller

actions and add a view named AddressAndPayment which is strongly typed as an Order and uses the Edit

template, as shown below.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 120

This view will make use of two of the techniques we looked at while building the StoreManagerEdit view:

 We will use Html.EditorForModel() to display form fields for the Order model

 We will leverage validation rules using an Order class with validation attributes

We’ll start by updating the form code to use Html.EditorForModel(), followed by an additional textbox for the

Promo Code. The complete code for the AddressAndPayment view is shown below.

@model MvcMusicStore.Models.Order

@{
 ViewBag.Title = "Address And Payment";
}

<script src="@Url.Content("~/Scripts/jquery.validate.min.js")"
type="text/javascript"></script>
<script src="@Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")"
type="text/javascript"></script>

@using (Html.BeginForm()) {

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 121

 <h2>Address And Payment</h2>
 <fieldset>
 <legend>Shipping Information</legend>

 @Html.EditorForModel()
 </fieldset>
 <fieldset>
 <legend>Payment</legend>
 <p>We're running a promotion: all music is free with the promo code: "FREE"</p>

 <div class="editor-label">
 @Html.Label("Promo Code")
 </div>
 <div class="editor-field">
 @Html.TextBox("PromoCode")
 </div>
 </fieldset>

 <input type="submit" value="Submit Order" />
}

Defining validation rules for the Order
Now that our view is set up, we will set up the validation rules for our Order model as we did previously for the

Album model. Right-click on the Models folder and add a class named Order. In addition to the validation

attributes we used previously for the Album, we will also be using a Regular Expression to validate the user’s e-

mail address.

using System.Collections.Generic;
using System.ComponentModel;
using System.ComponentModel.DataAnnotations;
using System.Web.Mvc;

namespace MvcMusicStore.Models
{
 [Bind(Exclude = "OrderId")]
 public partial class Order
 {
 [ScaffoldColumn(false)]
 public int OrderId { get; set; }

 [ScaffoldColumn(false)]
 public System.DateTime OrderDate { get; set; }

 [ScaffoldColumn(false)]
 public string Username { get; set; }

 [Required(ErrorMessage = "First Name is required")]
 [DisplayName("First Name")]
 [StringLength(160)]
 public string FirstName { get; set; }

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 122

 [Required(ErrorMessage = "Last Name is required")]
 [DisplayName("Last Name")]
 [StringLength(160)]
 public string LastName { get; set; }

 [Required(ErrorMessage = "Address is required")]
 [StringLength(70)]
 public string Address { get; set; }

 [Required(ErrorMessage = "City is required")]
 [StringLength(40)]
 public string City { get; set; }

 [Required(ErrorMessage = "State is required")]
 [StringLength(40)]
 public string State { get; set; }

 [Required(ErrorMessage = "Postal Code is required")]
 [DisplayName("Postal Code")]
 [StringLength(10)]
 public string PostalCode { get; set; }

 [Required(ErrorMessage = "Country is required")]
 [StringLength(40)]
 public string Country { get; set; }

 [Required(ErrorMessage = "Phone is required")]
 [StringLength(24)]
 public string Phone { get; set; }

 [Required(ErrorMessage = "Email Address is required")]
 [DisplayName("Email Address")]
 [RegularExpression(@"[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,4}",
 ErrorMessage = "Email is is not valid.")]
 [DataType(DataType.EmailAddress)]
 public string Email { get; set; }

 [ScaffoldColumn(false)]
 public decimal Total { get; set; }

 public List<OrderDetail> OrderDetails { get; set; }
 }
}

Attempting to submit the form with missing or invalid information will now show error message using client-side

validation.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 123

Okay, we’ve done most of the hard work for the checkout process; we just have a few odds and ends to finish.

We need to add two simple views, and we need to take care of the handoff of the cart information during the

login process.

Adding the Checkout Complete view

The Checkout Complete view is pretty simple, as it just needs to display the Order ID. Right-click on the

Complete controller action and add a view named Complete which is strongly typed as an int.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 124

Now we will update the view code to display the Order ID, as shown below.

@model int

@{
 ViewBag.Title = "Checkout Complete";
}

<h2>Checkout Complete</h2>

<p>Thanks for your order! Your order number is: @Model</p>

<p>How about shopping for some more music in our
 @Html.ActionLink("store", "Index", "Home")
</p>

Updating The Error view

The default template includes an Error view in the Shared views folder so that it can be re-used elsewhere in the

site. This Error view contains a very simple error and doesn’t use our site Layout, so we’ll update it.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 125

Since this is a generic error page, the content is very simple. We’ll include a message and a link to navigate to

the previous page in history if the user wants to re-try their action.

@{
 ViewBag.Title = "Error";
}

<h2>Error</h2>

<p>We're sorry, we've hit an unexpected error.
 Click here
 if you'd like to go back and try that again.</p>

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 126

10. Final updates to Navigation and Site Design
We’ve completed all the major functionality for our site, but we still have some features to add to the site

navigation, the home page, and the Store Browse page.

Creating the Shopping Cart Summary Partial View

We want to expose the number of items in the user’s shopping cart across the entire site.

We can easily implement this by creating a partial view which is added to our Site.master.

As shown previously, the ShoppingCart controller includes a CartSummary action method which returns a partial

view:

//
// GET: /ShoppingCart/CartSummary

[ChildActionOnly]
public ActionResult CartSummary()
{
 var cart = ShoppingCart.GetCart(this.HttpContext);

 ViewData["CartCount"] = cart.GetCount();

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 127

 return PartialView("CartSummary");
}

To create the CartSummary partial view, right-click on the Views/ShoppingCart folder and select Add View.

Name the view CartSummary and check the “Create a partial view” checkbox as shown below.

The CartSummary partial view is really simple - it’s just a link to the ShoppingCart Index view which shows the

number of items in the cart. The complete code for CartSummary.cshtml is as follows:

@Html.ActionLink("Cart (" + ViewData["CartCount"] + ")",
 "Index",
 "ShoppingCart",
 new { id = "cart-status" })

We can include a partial view in any page in the site, including the Site master, by using the Html.RenderAction

method. RenderAction requires us to specify the Action Name (“CartSummary”) and the Controller Name

(“ShoppingCart”) as below.

@Html.RenderAction("CartSummary", "ShoppingCart")

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 128

Before adding this to the site Layout, we will also create the Genre Menu so we can make all of our Site.master

updates at one time.

Creating the Genre Menu Partial View

We can make it a lot easier for our users to navigate through the store by adding a Genre Menu which lists all

the Genres available in our store.

We will follow the same steps also create a GenreMenu partial view, and then we can add them both to the Site

master. First, add the following GenreMenu controller action to the StoreController:

//
// GET: /Store/GenreMenu

[ChildActionOnly]
public ActionResult GenreMenu()
{
 var genres = storeDB.Genres.ToList();

 return PartialView(genres);
}

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 129

This action returns a list of Genres which will be displayed by the partial view, which we will create next.

Note: We have added the [ChildActionOnly] attribute to this controller action, which indicates that we only want

this action to be used from a Partial View. This attribute will prevent the controller action from being executed by

browsing to /Store/GenreMenu. This isn’t required for partial views, but it is a good practice, since we want to

make sure our controller actions are used as we intend. We are also returning PartialView rather than View,

which lets the view engine know that it shouldn’t use the Layout for this view, as it is being included in other

views.

Right-click on the GenreMenu controller action and create a partial view named GenreMenu which is strongly

typed using the Genre view data class as shown below.

Update the view code for the GenreMenu partial view to display the items using an unordered list as follows.

@model IEnumerable<MvcMusicStore.Models.Genre>

<ul id="categories">
 @foreach (var genre in Model)

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 130

 {
 @Html.ActionLink(genre.Name,
 "Browse", "Store",
 new { Genre = genre.Name }, null)

 }

Updating Site Layout to display our Partial Views
We can add our partial views to the Site Layout (/Views/Shared/_Layout.cshtml) by calling Html.RenderAction().

We’ll add them both in, as well as some additional markup to display them, as shown below:

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="@Url.Content("~/Content/Site.css")" rel="stylesheet"
 type="text/css" />
 <script src="@Url.Content("~/Scripts/jquery-1.4.4.min.js")"
 type="text/javascript"></script>
</head>
<body>
 <div id="header">
 <h1>ASP.NET MVC MUSIC STORE</h1>
 <ul id="navlist">
 <li class="first">Home
 Store
 @{Html.RenderAction("CartSummary", "ShoppingCart");}
 Admin

 </div>

 @{Html.RenderAction("GenreMenu", "Store");}

 <div id="main">
 @RenderBody()
 </div>

 <div id="footer">
 built with ASP.NET MVC 3
 </div>
</body>
</html>

Now when we run the application, we will see the Genre in the left navigation area and the Cart Summary at the

top.

Update to the Store Browse page
The Store Browse page is functional, but doesn’t look very good. We can update the page to show the albums in

a better layout by updating the view code (found in /Views/Store/Browse.cshtml) as follows:

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 131

@model MvcMusicStore.Models.Genre

@{
 ViewBag.Title = "Browse Albums";
}

<div class="genre">
 <h3>@Model.Name Albums</h3>

 <ul id="album-list">
 @foreach (var album in Model.Albums)
 {

 @album.Title

 }

</div>

Here we are making use of Url.Action rather than Html.ActionLink so that we can apply special formatting to the

link to include the album artwork.

Note: We are displaying a generic album cover for these albums. This information is stored in the database and is

editable via the Store Manager. You are welcome to add your own artwork.

Now when we browse to a Genre, we will see the albums shown in a grid with the album artwork.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 132

Updating the Home Page to show Top Selling Albums

We want to feature our top selling albums on the home page to increase sales. We’ll make some updates to our

HomeController to handle that, and add in some additional graphics as well.

First, we’ll add a navigation property to our Album class so that EntityFramework knows that they’re associated.

The last few lines of our Album class should now look like this:

 public virtual Genre Genre { get; set; }
 public virtual Artist Artist { get; set; }
 public virtual List<OrderDetail> OrderDetails { get; set; }
 }
}

Note: This will require adding a using statement to bring in the System.Collections.Generic namespace.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 133

First, we’ll add a storeDB field and the MvcMusicStore.Models using statements, as in our other controllers.

Next, we’ll add the following method to the HomeController which queries our database to find top selling

albums according to OrderDetails.

private List<Album> GetTopSellingAlbums(int count)
{
 // Group the order details by album and return
 // the albums with the highest count

 return storeDB.Albums
 .OrderByDescending(a => a.OrderDetails.Count())
 .Take(count)
 .ToList();
}

This is a private method, since we don’t want to make it available as a controller action. We are including it in

the HomeController for simplicity, but you are encouraged to move your business logic into separate service

classes as appropriate.

With that in place, we can update the Index controller action to query the top 5 selling albums and return them

to the view.

public ActionResult Index()
{
 // Get most popular albums
 var albums = GetTopSellingAlbums(5);

 return View(albums);
}

The complete code for the updated HomeController is as shown below.

using System.Collections.Generic;
using System.Linq;
using System.Web.Mvc;
using MvcMusicStore.Models;

namespace MvcMusicStore.Controllers
{
 public class HomeController : Controller
 {
 //
 // GET: /Home/

 MusicStoreEntities storeDB = new MusicStoreEntities();

 public ActionResult Index()
 {
 // Get most popular albums
 var albums = GetTopSellingAlbums(5);

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 134

 return View(albums);
 }

 private List<Album> GetTopSellingAlbums(int count)
 {
 // Group the order details by album and return
 // the albums with the highest count

 return storeDB.Albums
 .OrderByDescending(a => a.OrderDetails.Count())
 .Take(count)
 .ToList();
 }
 }
}

Finally, we’ll need to update our Home Index view so that it can display a list of albums by updating the Model

type and adding the album list to the bottom. We will take this opportunity to also add a heading and a

promotion section to the page.

@model List<MvcMusicStore.Models.Album>
@{
 ViewBag.Title = "ASP.NET MVC Music Store";
}
<div id="promotion">
</div>

<h3>Fresh off the grill</h3>

<ul id="album-list">
 @foreach (var album in Model)
 {
 <a href="@Url.Action("Details", "Store",
 new { id = album.AlbumId })">

 @album.Title

 }

Now when we run the application, we’ll see our updated home page with top selling albums and our

promotional message.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) – http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 135

Conclusion
We’ve seen that that ASP.NET MVC makes it easy to create a sophisticated website with database access,

membership, AJAX, etc. pretty quickly. Hopefully this tutorial has given you the tools you need to get started

building your own ASP.NET MVC applications!

	Overview
	1. File -> New Project
	Installing the software
	Creating a new ASP.NET MVC 3 project

	2. Controllers
	Adding a HomeController
	Running the Application
	Adding a StoreController

	3. Views and Models
	Adding a View template
	Using a Layout for common site elements
	Updating the StyleSheet
	Using a Model to pass information to our View
	Adding Links between pages

	4. Data Access
	Database access with Entity Framework Code-First
	Changes to our Model Classes
	Adding the Artist Model Classes
	Updating our Model Classes

	Adding the App_Data folder
	Creating a Connection String in the web.config file
	Adding a Context Class
	Adding our store catalog data

	Querying the Database
	Updating the Store Index to query the database
	Updating Store Browse and Details to use live data

	5. Edit Forms using Scaffolding
	Creating the StoreManagerController
	Modifying a Scaffolded View
	A first look at the Store Manager
	Looking at the Store Manager Controller code
	Store Manager Index and Details actions
	The Create Action Methods
	Passing information to a View using ViewBag
	HTML Helpers to display the Drop Downs in the Create View
	Handling the Posted Form values
	Reading Form Values with Model Binding
	Validating the Model
	Saving the submitted values
	Displaying invalid form submissions with Validation Errors
	Testing the Create Form

	Handling Edits
	Handling Deletion
	Using a custom HTML Helper to truncate text

	6. Using Data Annotations for Model Validation
	Adding Validation to our Album Forms
	Testing the Client-Side Validation

	7. Membership and Authorization
	Adding the AccountController and Views
	Adding an Administrative User with the ASP.NET Configuration site
	Role-based Authorization

	8. Shopping Cart with Ajax Updates
	Adding the Cart, Order, and OrderDetail model classes
	Managing the Shopping Cart business logic
	ViewModels

	The Shopping Cart Controller
	Ajax Updates with jQuery

	9. Registration and Checkout
	Migrating the Shopping Cart
	Creating the CheckoutController
	Adding the AddressAndPayment view
	Defining validation rules for the Order
	Adding the Checkout Complete view
	Updating The Error view

	10. Final updates to Navigation and Site Design
	Creating the Shopping Cart Summary Partial View
	Creating the Genre Menu Partial View
	Updating Site Layout to display our Partial Views
	Update to the Store Browse page
	Updating the Home Page to show Top Selling Albums

	Conclusion

