ASP.NET MVC Music Store
Tutorial

Version 3.0b

Jon Galloway - Microsoft
4/28/2011

http://mvcmusicstore.codeplex.com - Licensed under Creative Commons Attribution 3.0 License.

ASP.NET MVC Music Store Tutorial

Contents
L0 AT V= TSR PPSRP 4
O 1T N oA T o o =Y or SRR 9
INSTAllING the SOTEWAIE ..t e et e e s s bbe e e e s ateeeesaateeessasbeeeesnsseeesasreeesennsens 9
Creating @ NEW ASP.NET IMVC 3 PrOJECT ...uuuuuuuiiiieieuetuierttetetttetetererereeererereeerereeereee..e..—.—.—————————————————————.—.....n.————.. 11
P e { o] 11T OO UR USRI PPURRRPRP 15
Fi¥o o g Y= T o Fo Yo s Y=Y 0o oY e | LT USSR 15
(UL e T oY a = a8 d o Tl Y o] FTor= Y o] o U PRURPROE 17
Yo o g T e T =1 @Y oYl o] | L= SRR 19
3. ViIEWS @NA IMOEIS. ..ottt ettt ettt e bt e s bt e e bt e e s ab e e sabeeesabeesabaeesabeesabaeesabeesabeesanteesabeeenres 24
Yo o I g T IV A TN <Y Y o] - ISR 24
Using a Layout for COMMON Sit@ EIEMENTSviiiiiiiee ettt e et e e e e bte e e s e bteeeeebteeesenrtaneeennes 27
UPdating the STYIESNEET......cc et e e et e e e et e e e s e bte e e e e bteeeeebteeesestaeeeestesesanssneanannes 29
Using a Model to pass information 10 OUI VIEW......c.ueiiiiiiiii ittt e s e e s bre e e s ebaeeeeeanes 31
AddINg LiNKS DEEWEEN PAGES «.vviiiieiiiii it citee ettt e eettee e et e e st e e e e s e e e s eabeee e ssabeeeeeabeeeeesaseeesesaseeesssnseeessnnsens 41
L D - | 4= 1Y ol o LN 44
Database access with Entity Framework COAE-FirStcuuiiiiiiiiiiiiiieecccieee et ee ettt e e e eetree e e e etre e e e ebteeeeebaaeeeeanes 44
Changes tO OUN IMOAE] CIaSSES......uuiiiiiiiieeieiiiee ettt ettt e e ettt e e e et e e e e et e e e e ebteeeesbtaeaeestseeesnssaeaseassseanassneananses 44
Fi¥o o [T a8 d o Tl Y oo I D =Y = i o] o =T PN 45
Creating a Connection String in the web.config file ... e 46
Fi¥e o [T oY T 0o] Y L=l O - 1SRRI 46
Ji¥o o [T oo YU g (o) f =l or- 1 =1 (oY= e = = RN 47
(O TUT VT o= d o [l D E- = o T Y < FR SRR 48
Updating the Store Index to query the database...........ueeeeiiiiccciiiee e e e 49
Updating Store Browse and Details to Use [iVe datacccceeieeiieiicciiie e 49
5. Edit FOrms USING SCAffOlAING......viiiiiiiiee ittt et ett e e et e e e e bte e e e ebteeessbteeesensteeeesnseneaeanses 54
Creating the StoreManagerCONtIOllEr.......cc.uiii i e e e et e e e e st e e e e e abae e s eeabeeeeenasenas 54
MOdifying @ SCAffOIAEA VIBWoeeieiiie ettt e e et e e e e bt e e e e ebbeeeeebtaeeeebsaeaesbseeaeessaeananses 55
A first [00K @t the STOrE IMIANAEETcccceviie ettt e ettt e e et e e e e e bae e e e e bae e e e abaeeeesabaeaeeantaseseantaeeeennrenas 57

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 1

Looking at the Store Manager CoONTrollEr COUE ...ttt e e s sbee e e s ebaeeeesanes 61

Store Manager Index and Details @CtIONS.........uiiiiciiiiiiciiie e e e e st e e e snreeeean 62

The Create ACtiON METhOUS. ..ottt et b e s b s e st e et e e beesneesanenas 62
Passing information to @ VIeW USING VIEWBAE.........cccuuiiiiiiiie ettt svte e e etae e e sarae e s e earae e e enneeas 62
HTML Helpers to display the Drop Downs in the Create VIEW........cccueiiieiiiei ettt 63
Handling the POSted FOIM VAlUES.........oiiiiiiiii ittt ettt ste e e st e e e s sab e e s s sabee e s e sabee e e ssabeeesennreens 64

[1o 1 g o [PP 66

[TaTe 1 TaT=q D L=] 1=Y o o PSPPI 68
Using a custom HTML Helper t0 trunCate tEXE......uiiiiiiii ettt e e e e evee e e eab e e e e areeas 72

6. Using Data Annotations for Model Validationcoooeiiii ittt e et e e e eate e e e ebee e e e eanes 76
Adding Validation to oUr AIDUM FOIMSiiiiiiiie ettt et e e e e et e e e e ate e e s enteeesennsaeesenteeeeennsenas 76
Testing the Client-Side Validationooiiiiiiiiiicee e e ree e s s e e e e ee e s enareeas 79

7. Membership and AULNOTIZAtIONc..viiiiciiee et e e st e e e st te e e e s beaeessbteeessbteeeessseeaesnnes 81
Adding the AccountCoNtroller @Nd VIBWSoeiiiiiiiei ettt eee e e etee e e rbae e e e earee e e e eabae e s eeabaeeeennreeas 81
Adding an Administrative User with the ASP.NET Configuration Site........cccccceeeviiiiieciiee e 82
RolE-based AULNOIIZAtION ...c..eiiiiiieee ettt ettt e st e b e e e e sbeesbeesaee e 87

8. Shopping Cart With AJaX UPAatesuuii ittt et e et e e st e e s s sate e e e s bteeeesbteeessbteeessseeeeesssaeessnnes 89
Adding the Cart, Order, and OrderDetail MOdel ClasSescccuuiiiiiiiiiiiiieee e 89
Managing the Shopping Cart bUSINESS IOZIC.......ciiiiiiiiiiiiiie e e e s sbre e e s s rreeeeeanes 91
VIBWIMOEIS ...ttt ettt b e s bt s at e e a b e et e e bt e eheesae e sabeeabe e bt e nbeesbeesabesateebeenbeesaeesanenas 95

The ShoPPING Cart CONTIOIIENccc et e et e e e et e e e e ebt e e e s eebteeesebteeaeenbeaeeeeasteseesaseneananses 97
AJaX UPdates With JQUEBIYveie ettt e e e tte e e e ettt e e e e ettt e e e e et ae e e eeabaeeeesabaeeeeasbaeeeesabaseseantaeeeensenas 99
9. Registration @and CHECKOULeiiiiiiie et e e e st e e e s sata e e e saaaeeesssaeeeessaeeesnnsraeeans 109
Migrating the SNOPPING Carteeiiiiiiiei e e e et e e e ata e e e sataeeesaatseaessssaeeesssaeeeennsseeeans 113
Creating the CheCKOULCONTIOIIET e e e et ee e e e be e e e seabee e e esnbaeeesnreeas 114
Adding the AddresSANAPAYMENT VIEWueiiiiiiiiiciiiiieee ettt e e e e e et e e e e e e e e snaree e e e e e e e sensstaneeeeeesssannnssenneens 119
Defining validation rules fOr the OFAErouuiii ettt e e e e e e eta e e e e e ba e e e esabseeeeannreeaaas 121
Adding the Checkout COMPIELE VIBWuuiiiiiiiicciiiieeee st e e e e e e et e e e e e e s e s et e e e e e e e e ssnsntaeeeeeeesssannsseneeens 123
UPAALiNG THE EFTON VIBW....iiiiiiiiieeccitiee ettt ee ettt e e ettt e e et et e e e ata e e e eeataeeesataeeeessaeeesnssaeeesnsseeesssaeeesnssseeeennssneeans 124
10. Final updates to Navigation and Sit€ DESIZNueiiiiiiiii it e e e ee e e e eabae e e e eaaaeas 126
Creating the Shopping Cart SUMMary Partial VIEWccooiiiiiiciiie ettt ree e e e e 126
Creating the Genre MenU Partial VIEWcoooiiiiiiee ettt e e et e e e e e e e s abea e e e e e e e s e e nnreaaeeeaeeeenas 128

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 2

Updating Site Layout to display our Partial VIEWSceeeeieciiiiiiie ettt nvree e e e e ennranee e

UpPdate tO the STOre BrOWSE PABE ...uviiiiiciiieiiciiieeeeiitee e sttt e sttt e s sttt e e e sttt e e e esabaeesssbaeeesasaeaesassaeeesansseeesanssenennn

Updating the Home Page to show Top Selling AIDUMSccoiciiiiiiiiiie e eeaaee e

Conclusion

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 3

Overview

The MVC Music Store is a tutorial application that introduces and explains step-by-step how to use ASP.NET
MVC and Visual Web Developer for web development. We’ll be starting slowly, so beginner level web
development experience is okay.

The application we’ll be building is a simple music store. There are three main parts to the application: shopping,
checkout, and administration.

_‘)\ @ http://localhost:40404/ ~ | & | Xl & ASP.NET MVC Music Store .

m Home : Store = Cart(0) | Admin

ASP.NET MVC MUSIC STORE

Rock

Jazz

Metal
Alternative
Disco
Blues

Latin
Reggae
Pop

Classical

Fresh off the grill

Sample Sample Sample Sample Sample
&y &y &y =y &y

Nevermind The Worst Of Misplaced Greatest Hits Let There Be
Men At Work Childhood Rock

built with ASP.NET MVC 3

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 4

Visitors can browse Albums by Genre:

& http://localhost:40404/Store/Browse?Genre=Jazz w7 2 Browse Albums

Home | Store Cart (0) Admin
ASP.NET MVC MUSIC STORE

Rock Jazz Albums
Jazz
Metal Sample Sample
Alternative o . .

. & j £
Disco

e

Blues

. i Worlds Quanta Gente
Latin The Best Of Quiet Songs Worlds uanta Gente

Billy Cobham Veio ver—Bonus
Reggae De Carnaval
Pop

Classical

Sarnple Sarmple Carnple Carnple

o O e O

Heart of the Moming Dance Warner 25 Anos Miles Ahead
Night

They can view a single album and add it to their cart:

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 5

@ nitp://localhost40404/Store/Details/570 - 2 Album - Miles Ahead

Home | Store Cart(0) Admin

ASP.NET MVC MUSIC STORE

Rock Mifes Ahead
Jazz
Metal Sample

Alternative &
Disco

Blues
Latin Genre: Jazz

Reggae Artist: Miles Davis
Pop Price: 8.99

Classical
Add to cart

built with ASP.NET MVC 3

They can review their cart, removing any items they no longer want:

* Home Store Cart(3) Admin

ASP.NET MVC MUSIC STORE

Rock Review your cart:
Jazz
Metal Checkout >>
Alternative
Blues -
; Pachelbel: Canon & Gigue §.99 2 Remove from cart
Latin
Reggae Miles Ahead 8.99 1 Remove from cart
Pop Total 26.97
Classical

built with ASP.NET MVC 3

Proceeding to Checkout will prompt them to login or register for a user account.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 6

* Home Store Cart (3) Admin

ASP.NET MVC MUSIC STORE

Rock Log On
{ ‘?H 1 Please enter your username and password. Register if you don't have an account.
Meta
Alternative]
Di — Account Information

1SCO
Blues User name
Latin | |
Reggae Password
Pop | |
Classical

[Remember me?

* Home Store Cart (3) Admin

ASP.NET MVC MUSIC STORE

Rock Create a New Account
Jazz Use the form below to create a new account.
Metal
Alternative Passwords are required to be a minimum of & characters in length.
Disco
Blues — Account Information
Latin
R User name

egga.e | |
Pop
Classical Email address

|
Password

Confirm password

After creating an account, they can complete the order by filling out shipping and payment information. To keep
things simple, we're running an amazing promotion: everything’s free if they enter promotion code “FREE”!

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 7

Rock

— Shipping Information

Jazz

Metal . First Name Won |

Alternative

Disco Last Name [Galloway |

Blues _

5 Address [123 Main |

Latin

Reggae City Denver |

Pop

Classical State co |
Postal Code [12345 |
Country usA |
Phone [(123) 456-7890 |
Email Address fest@test.com |

— Payment

We're running a promotion: all music is free with the promo code "FREE"
Promo Code [FREE |

Submit Order

After ordering, they see a simple confirmation screen:

* Home = Store | Cart(0) Admin

ASP.NET MVC MUSIC STORE

Rock Checkout Complete
Jazz
Metal
Aliternative How about shopping for some more music in our store
Disco
Blues
Latin
Reggae
Pop
Classical

Thanks for your order! Your order number is: 475

built with ASP.NET MVC 3

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 8

In addition to customer-faceing pages, we'll also build an administrator section that shows a list of albums from
which Administrators can Create, Edit, and Delete albums:

Albums

Title Artist Genre
| For Those About To Rock W... AC/DC Rock
| Let There Be Rock AC/DC Rock
| Greatest Hits Lenny Kravitz Rock
| Misplaced Chidhoo Marilion Rock
| The Best Of Men At Work Men At Work Rock
| Newvermind Nirvana Rock
| Compaositores O Tergo Rock
| Bark at the Moon (Remaste... Ozzy Osbourne Rock

1. File -> New Project

Installing the software

This tutorial will begin by creating a new ASP.NET MVC 3 project using the free Visual Web Developer 2010
Express (which is free), and then we’ll incrementally add features to create a complete functioning application.
Along the way, we’ll cover database access, form posting scenarios, data validation, using master pages for
consistent page layout, using AJAX for page updates and validation, user login, and more.

You can follow along step by step, or you can download the completed application from
http://mvcmusicstore.codeplex.com.

You can use either Visual Studio 2010 SP1 or Visual Web Developer 2010 Express SP1 (a free version of Visual
Studio 2010) to build the application. We'll be using the SQL Server Compact (also free) to host the database.
Before you start, make sure you've installed the prerequisites listed below. You can install all of them using the
following Web Platform Installer

link: http://www.microsoft.com/web/gallery/install.aspx?appid=VWD2010SP1Pack

Note: You can find this link on the big green button at this (easier to remember) link: http://asp.net/mvc

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 9

http://mvcmusicstore.codeplex.com/
http://www.microsoft.com/web/gallery/install.aspx?appid=VWD2010SP1Pack
http://asp.net/mvc

What is ASP.NET MVC?
% ASP.NET MVC gives you a powerful, patterns-based way
to build dynamic websites that enables a dean separation

of concerns and that gives you full control over markup

Project Temrlate for enjoyable, agile development. ASP.NET MVC includes
many features that enable fast, TDD-friendly
Select ate A development for creating sophisticated applications that
use the latest web standards.
L=ch = Visual Studio Express provides a free development tool
Empty [LouEM | that makes MVC development easy.

Install Visual Studio Express

Already have Visual Studio? Just download the MVC 3 installer.

The Web Platform Installer will check what you’ve got installed and just download what you need.

|"\

© Web Platform Installer 3.0 = @] =

Q) Visual Web Developer Express 2010 SP1

Locking for the latest everything? Lock no further. This will
get you Visual Web Developer Express 2010 Service Pack 1
and the RTM releases of ASP.MET MVC 3, IS 7.5 Express, 5QL
Server Compact 4.0 with toeling, and Web Deploy 2.0.1t's
Micronch® . the value meal of Microsoft products. Tell your friends!
O® Visual Studio P g
Mote: This bundle includes the Visual Web Developer Express
2010 5P1 web installer, which will dynamically determine the
appropriate service pack components to download and
install. This is typically in the range of 200-500 ME and will
take 30-60 minutes to install, depending on your machine
configuration.

Publisher: Microsoft

Download Size: 0.00 MB

Yersion: 10.0.40219.01

Release date: Thursday, March 10, 2011

1 Iemsto be installed Options Install I [Exit

If you want to individually install the prerequisites using the following links instead of using the above link, use
the following links (written out in case you're using a printed version of this tutorial):

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 10

e Visual Studio Web Developer Express SP1 prerequisites
http://www.microsoft.com/web/gallery/install.aspx?appid=VWD2010SP1Pack

e ASP.NET MVC 3 Tools Update
http://www.microsoft.com/web/gallery/install.aspx?appid=MVC3

e SQL Server Compact 4.0 - including both runtime and tools support
http://www.microsoft.com/web/gallery/install.aspx?appid=SQLCE;SQLCEVSTools_4 0

Note: If you're using Visual Studio 2010 instead of Visual Web Developer 2010, install the prerequisites with this

link instead:

Visual Studio Web Developer Express SP1 prerequisites
http://www.microsoft.com/web/gallery/install.aspx?appsxm|=&appid=VS2010SP1Pack

| highly recommend you use the first Web Platform Installer link, as it will make sure you’ve got everything set

up correctly.

Creating a new ASP.NET MVC 3 project
We'll start by selecting “New Project” from the File menu in Visual Web Developer. This brings up the New

Project dialog.

El Microsoft Visual Web Developer 2010 hpg

File | Edit View Debug Tools Window Help
2 MNew Project... Ctrl+Shift«sN || b
@ Mew Web Site... Shift+Alt+N
[Mew File... Ctrl+M
f| Open Project... Ctrl+Shift+0
2 Open Web Site... Shift+Alt+0
| [OpenFile... Ctrl+0

We'll select the Visual C# -> Web Templates group on the left, then choose the “ASP.NET MVC 3 Web
Application” template in the center column. Name your project MvcMusicStore and press the OK button.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 11

http://www.microsoft.com/web/gallery/install.aspx?appid=VWD2010SP1Pack
http://www.microsoft.com/web/gallery/install.aspx?appsxml=&appid=MVC3
http://www.microsoft.com/web/gallery/install.aspx?appid=SQLCE;SQLCEVSTools_4_0
http://www.microsoft.com/web/gallery/install.aspx?appid=VWD2010SP1Pack

e ae
Recent Templates | Search Installed Templates R |
Installed Templates - ¥ Visual C&

_ , ‘E"'# ASP.NET Web Application Visual C# [] JPe 'IS42
Visual Basic = A project for creating an application using
4 Visual C# ASP.MET MVC 3
- = ASP.MET MVC 2 Web Applica..Visual C#
Windows .:c#

Web
Cloud
Micro Framework

ASP.MET MVC 3 Web Applica...Visual C#

Silverlight
WCF

4 ASP.MET Empty Web Applica... Visual C#

=0t ASP.MET MVC 2 Empty Web... Visual C#

Online Templates

ASP.MET Dynamic Data Entiti... Visual C#

MName: MhveMusicStore

Location: Chlsersi\YourMame\Documents\Visual Studio 2010\Projects hd Browse...

Solution name: MhecMusicStore Create directory for selution

This will display a secondary dialog which allows us to make some MVC specific settings for our project. Select
the following:

e Project Template - select Empty
e View Engine - select Razor
e Use HTML5 semantic markup - checked

Verify that your settings are as shown below, then press the OK button.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 12

Mew ASP.NMET MVC 3 P

Project Template

Select a template: Description:
.’ .’ An empty ASP.MET MVC 3 project.
L=ch L=ch

Internet Intranet
Application Application

View engine:

’Razm Use HTMLS semantic markup

[] Create a unit test project

Test project name:

Test framework:
| ~| Additional Info

This will create our project. Let’s take a look at the folders that have been added to our application in the
Solution Explorer on the right side.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 13

ra ™
[5] MveMusicStore - Microsoft Visual Web Developer 2010 Exp E=rE

File Edit View Project Build Debug Tools Window Help
PSP % a9 e - S-E b9 [Debug - % -] &t -
Selution Explorer v X

22l

.L% MwvcMusicStore

> [=d Properties

» s References

» |1 Content
1 Controllers
1 Models

> [Scripts

» L Wiews

> 4| Global.asax
=9 packages.config

> B9 Web.config

The Empty MVC 3 template isn’t completely empty — it adds a basic folder structure:

Solution Explorer * I 3

R REa

.5‘% MvcMusicStore

> [=d| Properties

» |+g] References

» [Content
1 Controllers
1 Models

= [Scripts

= [Views

s ﬂ] Global.asax
59 packages.config

. [Web.config

ASP.NET MVC makes use of some basic naming conventions for folder names:

Folder | Purpose

/Controllers Controllers respond to input from the browser, decide what to do with it,
and return response to the user.
/Views Views hold our Ul templates

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 14

/Models Models hold and manipulate data

/Content This folder holds our images, CSS, and any other static content

/Scripts This folder holds our JavaScript files

These folders are included even in an Empty ASP.NET MVC application because the ASP.NET MVC framework by
default uses a “convention over configuration” approach and makes some default assumptions based on folder
naming conventions. For instance, controllers look for views in the Views folder by default without you having
to explicitly specify this in your code. Sticking with the default conventions reduces the amount of code you
need to write, and can also make it easier for other developers to understand your project. We'll explain these
conventions more as we build our application.

2. Controllers
With traditional web frameworks, incoming URLs are typically mapped to files on disk. For example: a request

for a URL like "/Products.aspx" or "/Products.php" might be processed by a "Products.aspx" or "Products.php"
file.

Web-based MVC frameworks map URLs to server code in a slightly different way. Instead of mapping incoming
URLs to files, they instead map URLs to methods on classes. These classes are called "Controllers" and they are
responsible for processing incoming HTTP requests, handling user input, retrieving and saving data, and
determining the response to send back to the client (display HTML, download a file, redirect to a different URL,
etc.).

Adding a HomeController

We'll begin our MVC Music Store application by adding a Controller class that will handle URLs to the Home
page of our site. We'll follow the default naming conventions of ASP.NET MVC and call it HomeController.

Right-click the “Controllers” folder within the Solution Explorer and select “Add”, and then the “Controller...”
command:

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 15

Solution Explorer ~ T X
= 2 E e
) MvcMusicStore
» [Properties
- [= References
- @ Content
Convert to Web Application .
Controller... Ctrl+M, Ctrl+C Add ’
i New Item.. Ctrl+ Shift+A Exclude From Project
2 Existing Item... Shift+Alt+A & Cut Ctrl+X 8
4 New Folder =a Copy Ctrl+C J
Add ASP.NET Folder 3 , Paste Ctrl+V
¥4 Class... X Delete Del
Rename
Properties Alt+Enter
ERECITIe M A= Databas...

This will bring up the “Add Controller” dialog. Name the controller “HomeController” and press the Add button.

I it

Contraller name:

EEEEController

Scaffolding options

Temnplate:

’ Ernpty controller A

Add][_

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 16

This will create a new file, HomeController.cs, with the following code:

using System;

using System.Collections.Generic;
using System.Lingq;

using System.Web;

using System.Web.Mvc;

namespace MvcMusicStore.Controllers

{
public class HomeController : Controller
{
//
// GET: /Home/
public ActionResult Index()
{
return View();
}
}
}

To start as simply as possible, let’s replace the Index method with a simple method that just returns a string.
WEe’'ll make two changes:

e Change the method to return a string instead of an ActionResult
e Change the return statement to return “Hello from Home”

The method should now look like this:

public string Index()
{

}

return "Hello from Home";

Running the Application
Now let’s run the site. We can start our web-server and try out the site using any of the following::

e Choose the Debug =Start Debugging menu item
e Click the Green arrow button in the toolbar
E;l MvcMusicStore - Microsoft Visual Web Developer 2010 Express

File Edit View Project Debug Tools Window Help

E-j'ﬁ'l_}HJ|aﬁ—3-j‘Jvf‘J-|F _ | Debug v|

: =
=

_— = "

IIII:'<|

whoarffz| T2

o Use the keyboard shortcut, F5.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 17

Using any of the above steps will compile our project, and then cause the ASP.NET Development Server that is
built-into Visual Web Developer to start. A notification will appear in the bottom corner of the screen to indicate
that the ASP.NET Development Server has started up, and will show the port number that it is running under.

TI

@ ASP.NET Development Server * * ution...
http://localhost: 266411

Visual Web Developer will then automatically open a browser window whose URL points to our web-server.
This will allow us to quickly try out our web application:

Hello from Home

Okay, that was pretty quick — we created a new website, added a three line function, and we’ve got text in a
browser. Not rocket science, but it’s a start.

Note: Visual Web Developer includes the ASP.NET Development Server, which will run your website on a random
free “port” number. In the screenshot above, the site is running at http://localhost:26641/, so it’s using port
26641. Your port number will be different. When we talk about URL’s like /Store/Browse in this tutorial, that will
go after the port number. Assuming a port number of 26641, browsing to /Store/Browse will mean browsing to
http://localhost:26641/Store/Browse.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 18

Adding a StoreController

We added a simple HomeController that implements the Home Page of our site. Let’s now add another
controller that we'll use to implement the browsing functionality of our music store. Our store controller will
support three scenarios:

o Alisting page of the music genres in our music store
e A browse page that lists all of the music aloums in a particular genre
o A details page that shows information about a specific music album

We’'ll start by adding a new StoreController class.. If you haven’t already, stop running the application either by
closing the browser or selecting the Debug =Stop Debugging menu item.

Now add a new StoreController. Just like we did with HomeController, we’ll do this by right-clicking on the
“Controllers” folder within the Solution Explorer and choosing the Add->Controller menu item

Controller name:

m:}ntroller

Scaffolding options

Template:

’ Ernpty controller

Our new StoreController already has an “Index” method. We'll use this “Index” method to implement our
listing page that lists all genres in our music store. We'll also add two additional methods to implement the two
other scenarios we want our StoreController to handle: Browse and Details.

These methods (Index, Browse and Details) within our Controller are called “Controller Actions”, and as you’ve
already seen with the HomeController.Index()action method, their job is to respond to URL requests and
(generally speaking) determine what content should be sent back to the browser or user that invoked the URL.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 19

We'll start our StoreController implementation by changing thelndex() method to return the string “Hello from
Store.Index()” and we’ll add similar methods for Browse() and Details():

using System;

using System.Collections.Generic;
using System.Lingq;

using System.Web;

using System.Web.Mvc;

namespace MvcMusicStore.Controllers

{
public class StoreController : Controller
{
//
// GET: /Store/
public string Index()
{
return "Hello from Store.Index()";
}
//
// GET: /Store/Browse
public string Browse()
{
return "Hello from Store.Browse()";
}
//
// GET: /Store/Details
public string Details()
{
return "Hello from Store.Details()";
}
}
}

Run the project again and browse the following URLs:

e /Store
e /Store/Browse
e /Store/Details

Accessing these URLs will invoke the action methods within our Controller and return string responses:

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 20

LGl o ocomoseassit sioociss] ~ -] |X]

Hello from Store.Details()

That’s great, but these are just constant strings. Let’'s make them dynamic, so they take information from the
URL and display it in the page output.

First we'll change the Browse action method to retrieve a querystring value from the URL. We can do this by
adding a “genre” parameter to our action method. When we do this ASP.NET MVC will automatically pass any
querystring or form post parameters named “genre” to our action method when it is invoked.

//
// GET: /Store/Browse?genre=Disco

public string Browse(string genre)

{

string message = HttpUtility.HtmlEncode("Store.Browse, Genre = " + genre);

return message;

Note: We’re using the HttpU'tility. HtmlEncode utility method to sanitize the user input. This prevents users from
injecting Javascript into our View with a link like
/Store/Browse?Genre=<script>window.location="http://hackersite.com’</script>.

Now let’s browse to /Store/Browse?Genre=Disco

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 21

PR &1 tocamost 25 store movsergenre=sco) * +] & X

Store.Browse, Genre = Disco

Let’s next change the Details action to read and display an input parameter named ID. Unlike our previous
method, we won’t be embedding the ID value as a querystring parameter. Instead we’ll embed it directly within
the URL itself. For example: /Store/Details/5.

ASP.NET MVC lets us easily do this without having to configure anything. ASP.NET MVC'’s default routing
convention is to treat the segment of a URL after the action method name as a parameter named “ID”. If your
action method has a parameter named ID then ASP.NET MVC will automatically pass the URL segment to you as
a parameter.

//
// GET: /Store/Details/5

public string Details(int id)
{

string message = "Store.Details, ID = " + id;

return message;

}

Run the application and browse to /Store/Details/5:

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 22

@ http://localhost: 26641/ 5tore/Details/5

Store.Details, ID =5

Let’s recap what we’ve done so far:

o We've created a new ASP.NET MVC project in Visual Web Developer

e We've discussed the basic folder structure of an ASP.NET MVC application

e We've learned how to run our website using the ASP.NET Development Server

e We've created two Controller classes: a HomeController and a StoreController

e We've added Action Methods to our controllers which respond to URL requests and return text to the
browser

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 23

3. Views and Models

So far we’ve just been returning strings from controller actions. That’s a nice way to get an idea of how
controllers work, but it’s not how you’d want to build a real web application. We are going to want a better way
to generate HTML back to browsers visiting our site — one where we can use template files to more easily
customize the HTML content send back. That’s exactly what Views do.

Adding a View template
To use a view-template, we’ll change the HomeController Index method to return an ActionResult, and have it
return View(), like below:

public class HomeController : Controller

{
//
// GET: /Home/
public ActionResult Index()
{
return View();
}
}

The above change indicates that instead of returned a string, we instead want to use a “View” to generate a
result back.

We’ll now add an appropriate View template to our project. To do this we’ll position the text cursor within the
Index action method, then right-click and select “Add View”. This will bring up the Add View dialog:

public ActionResult Index“’

{ = Add View... Ctrl+M, Crl+V
return View(); = Go To View Ctrl+M, Ctrl+G
} Refactor ’

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 24

e N ==

View name:

View engine:

| Razor (CSHTML) -

[] Create a strongly-typed view

Model class:

Scaffold template:
Empty

[] Create as a partial view

Use a layout or master page:

(Leave emnpty if it is set in a Razor _viewstart file)

MainContent

The “Add View” dialog allows us to quickly and easily generate View template files. By default the “Add View”
dialog pre-populates the name of the View template to create so that it matches the action method that will use
it. Because we used the “Add View” context menu within the Index() action method of our HomeController, the
“Add View” dialog above has “Index” as the view name pre-populated by default. We don’t need to change any
of the options on this dialog, so click the Add button.

When we click the Add button, Visual Web Developer will create a new Index.cshtml view template for us in the
\Views\Home directory, creating the folder if doesn’t already exist.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 25

Solution Explorer

= 2l
;‘% MvcMusicStore
» [=d Properties
- [+3] References
» | Content
4 | = Controllers
#] HomeController.cs
#] StoreController.cs
3 Models
> [Scripts
a | Views
4 | Home
cf_ﬂ Index.cshtml
» 1 Shared
Ef_ﬂ _ViewStart.cshtml
i3 Web.config
s ,ﬂj Global.asax
. |E Web.config

l—“f‘g LT == E= Database Expl...

The name and folder location of the “Index.cshtml” file is important, and follows the default ASP.NET MVC
naming conventions. The directory name, \Views\Home, matches the controller - which is named
HomeController. The view template name, Index, matches the controller action method which will be displaying

the view.

ASP.NET MVC allows us to avoid having to explicitly specify the name or location of a view template when we
use this naming convention to return a view. It will by default render the \Views\Home\Index.cshtml view
template when we write code like below within our HomeController:

public class HomeController : Controller

{
//
// GET: /Home/
public ActionResult Index()
{
return View();
}
}

Visual Web Developer created and opened the “Index.cshtml” view template after we clicked the “Add” button
within the “Add View” dialog. The contents of Index.cshtml are shown below.

@{

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 26

ViewBag.Title = "Index";
¥

<h2>Index</h2>

This view is using the Razor syntax, which is more concise than the Web Forms view engine used in ASP.NET
Web Forms and previous versions of ASP.NET MVC. The Web Forms view engine is still available in ASP.NET MVC
3, but many developers find that the Razor view engine fits ASP.NET MVC development really well.

The first three lines set the page title using ViewBag.Title. We'll look at how this works in more detail soon, but
first let’s update the text heading text and view the page. Update the <h2> tag to say “This is the Home Page” as
shown below.

@{
ViewBag.Title = "Index";
}

<h2>This is the Home Page</h2>

Running the application shows that our new text is visible on the home page.

f i lo|/@| = |
T, L 3 5 y 4 -
(=" l\? http://localhost: 26641/ ~|C I X F.) Index ‘ ok Lt
This is the Home Page

Using a Layout for common site elements

Most websites have content which is shared between many pages: navigation, footers, logo images, stylesheet
references, etc. The Razor view engine makes this easy to manage using a page called _Layout.cshtml which has
automatically been created for us inside the /Views/Shared folder.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 27

;‘% MwvcMusicStore
» [=d] Properties
» [+g] References
- [Content
» [Controllers
[Models
> [Scripts
a | Views
4 | Home
‘f_ﬂ Index.cshtml
4 | Shared
’ o _Layout.cshtml
"] Error.cshtml
cf_ﬂ _ViewStart.cshtml
i3 Web.config
» 4=J Global.asax
. 3 Web.config

Double-click on this folder to view the contents, which are shown below.

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>@ViewBag.Title</title>
<link href="@Url.Content("~/Content/Site.css")" rel="stylesheet" type="text/css" />
<script src="@Url.Content("~/Scripts/jquery-1.5.1.min.js")"
type="text/javascript"></script>
<script src="@Url.Content("~/Scripts/modernizr-1.7.min.js")"
type="text/javascript"></script>
</head>

<body>
@RenderBody ()

</body>

</html>

The content from our individual views will be displayed by the @RenderBody() command, and any common
content that we want to appear outside of that can be added to the _Layout.cshtml| markup. We’ll want our
MVC Music Store to have a common header with links to our Home page and Store area on all pages in the site,
so we'll add that to the template directly above that @RenderBody() statement.

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>@ViewBag.Title</title>
<link href="@Url.Content("~/Content/Site.css")" rel="stylesheet" type="text/css" />
<script src="@Url.Content("~/Scripts/jquery-1.5.1.min.js")"
type="text/javascript"></script>

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 28

<script src="@Url.Content("~/Scripts/modernizr-1.7.min.js")"
type="text/javascript"></script>

</head>
<body>
<div id="header">
<hl>

ASP.NET MVC MUSIC STORE</h1>
<ul id="navlist">
<1i class="first">Home</1i>
Store</1i>

</div>

@RenderBody ()
</body>
</html>

Updating the StyleSheet

The empty project template includes a very streamlined CSS file which just includes styles used to display
validation messages. Our designer has provided some additional CSS and images to define the look and feel for
our site, so we’ll add those in now.

The updated CSS file and Images are included in the Content directory of MvcMusicStore-Assets.zip which is
available at http://mvcmusicstore.codeplex.com. We’'ll select both of them in Windows Explorer and drop them
into our Solution’s Content folder in Visual Web Developer, as shown below:

Solution Explorer * I 3

=&
S8 MvcMusicStore
> [=d| Properties
» |+g] References

Organize. == : | Content
Mame > [themes
:‘ﬂ Site.css
| . Images File folder » [Controllers
Al Site.css C55 Document [Models
= [Scripts
s Views

- 4] Global.asax
i packages.config

- = Web.config

You'll be asked to confirm if you want to overwrite the existing Site.css file. Click Yes.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 29

et I =
|

] A file with the name "Site.css' already exists, Do you want to replace it?

[Apply to all items

(|

The Content folder of your application will now appear as follows:

Solution Explorer * Il

& (2]
H;% MwvcMusicStore
[> [=d Properties
[o] References

4 |5 Content|
4 [Images
|8l home-showcase.png
il logo.png
|8l placeholder.gif
[[themes
Al Site.css
[» b Controllers
[Maodels
[Scripts
[Views
4] Global.asax

=9 packages.config
b i3 Web.config

Now let's run the application and see how our changes look on the Home page.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 30

Home Store

ASP.NET MVC MUSIC STORE

This is the Home Page

o Let’s review what’s changed: The HomeController’s Index action method found and displayed the
\Views\Home\Index.cshtmlView template, even though our code called “return View()”, because our
View template followed the standard naming convention.

e The Home Page is displaying a simple welcome message that is defined within the
\Views\Home\Index.cshtml view template.

e The Home Page is using our _Layout.cshtml template, and so the welcome message is contained within
the standard site HTML layout.

Using a Model to pass information to our View
A View template that just displays hardcoded HTML isn’t going to make a very interesting web site. To create a
dynamic web site, we'll instead want to pass information from our controller actions to our view templates.

In the Model-View-Controller pattern, the term Model refers to objects which represent the data in the
application. Often, model objects correspond to tables in your database, but they don’t have to.

Controller action methods which return an ActionResult can pass a model object to the view. This allows a
Controller to cleanly package up all the information needed to generate a response, and then pass this
information off to a View template to use to generate the appropriate HTML response. This is easiest to
understand by seeing it in action, so let’s get started.

First we'll create some Model classes to represent Genres and Albums within our store. Let’s start by creating a
Genre class. Right-click the “Models” folder within your project, choose the “Add Class” option, and name the
file “Genre.cs”.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 31

Solution Explorer * 1 X

=] e

:’3 MvcMusicStore

> |=d| Properties

» [«a] References

» [Content

» [Controllers
1 Models

Convert to Web Application Scripts

Views
New Item... Ctrl+Shift+A Add

Global.asax

Existing Item... Shift+Alt+A Exclude From Project s packages.config
Mew Folder & cut Ctrl+X =% Web.config
Add ASP.NET Folder 23 Copy Cerl+C
Class... 4 Paste Chrl+V
X Delete Del
Rename
Properties Alt+Enter

T ™
Installed Templates Sort by: [Default | Search Installed Templates 2 |
4 Visual CF)

Type: Visual C#
Code Cﬂ@ MVC 3 Layout Page (Razor) Visual C& ype: Visua
An empty class declaration
Data
General Cﬂ[@ MV 3 Partial Page (Razor) Visual C#
Web
Silverlight Cﬂ@ MVC 3 View Page (Razor) Visual C#
Online Templates #
L (@ | MVC3 View Page with Layou... Visual CZ
%EE MVC 3 View Content Page (A...Visual C#
MVC 3 View Master Page (AS... Visual C#
éﬂlzg MVC 3 View Page (ASPX) Visual C#
EH=l hie 2 iew ser Cantral (45 Vienal C2 -

Marne: |Genre.cs|

Then add a public string Name property to the class that was created:

public class Genre

{
}

public string Name { get; set; }

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 32

Note: In case you're wondering, the { get; set; } notation is making use of C#'s auto-implemented properties
feature. This gives us the benefits of a property without requiring us to declare a backing field.

Next, follow the same steps to create an Album class (named Album.cs) that has a Title and a Genre property:

public class Album

{
public string Title { get; set; }
public Genre Genre { get; set; }

Now we can modify the StoreController to use Views which display dynamic information from our Model. If - for
demonstration purposes right now - we named our Albums based on the request ID, we could display that
information as in the view below.

N

NGl &) nitp://ocalhost: 26641 /Store /Detsils

Home Store

ASP.NET MVC MUSIC STORE

Album: Album 5

We'll start by changing the Store Details action so it shows the information for a single album. Add a “using”
statement to the top of the StoreControllers class to include the MvcMusicStore.Models namespace, so we
don’t need to type MvcMusicStore.Models.Album every time we want to use the album class. The “usings”
section of that class should now appear as below.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.Mvc;

using MvcMusicStore.Models;

Next, we’ll update the Details controller action so that it returns an ActionResult rather than a string, as we did
with the HomeController’s Index method.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 33

public ActionResult Details(int id)

Now we can modify the logic to return an Album object to the view. Later in this tutorial we will be retrieving
the data from a database — but for right now we will use "dummy data" to get started.

public ActionResult Details(int id)

{
var album = new Album { Title = "Album " + id };

return View(album);

}

Note: If you’re unfamiliar with C#, you may assume that using var means that our album variable is late-bound.
That’s not correct — the C# compiler is using type-inference based on what we’re assigning to the variable to
determine that album is of type Album and compiling the local album variable as an Album type, so we get
compile-time checking and Visual Studio code-editor support.

Let’s now create a View template that uses our Album to generate an HTML response. Before we do that we
need to build the project so that the Add View dialog knows about our newly created Album class. You can build
the project by selecting the Debug=Build MvcMusicStore menu item (for extra credit, you can use the Ctrl-Shift-
B shortcut to build the project).

File Edit WView Refactor Project Build | Debug Data Tools Window
P ey B as TS | iE 3 | =4 Rebuild MvcMusicStore)

Clean MvchMusicStore

j’% Publish MvcMusicStore 3

Album.cs X

“t% MvcMusicStore.Models.Album
—lusing System;
using System.Collections.Generic;

Configuration Manager... 1

Now that we've set up our supporting classes, we're ready to build our View template. Right-click within the
Details method and select “Add View...” from the context menu.

.'.. .'I-

ff GET: fStore/Details/s

public ActicnResult Details(int id)

1
var album | 5| Add View...
= GoToView
return Vie =
| Refactor L
Organize Usings]

We are going to create a new View template like we did before with the HomeController. Because we are
creating it from the StoreController it will by default be generated in a \Views\Store\Index.cshtml file.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 34

Unlike before, we are going to check the “Create a strongly-typed” view checkbox. We are then going to select
our “Album” class within the “View data-class” drop-downlist. This will cause the “Add View” dialog to create a
View template that expects that an Aloum object will be passed to it to use.

i T
e N ==
View name:

View engine:

[Hamr (CSHTML) -

Create a strongly-typed view

Model class:

[All::lum (Mvchusicstore.Models) v]

Scaffold template:
[Empt_l.r v] Reference script libraries

[] Create as a partial view

Use a layout or master page:

]

(Leave empty if it is set in a Razor _viewstart file)

MainContent

Add ” Cancel

When we click the “Add” button our \Views\Store\Details.cshtml View template will be created, containing the
following code.

@model MvcMusicStore.Models.Album

@{

ViewBag.Title = "Details";
}
<h2>Details</h2>

Notice the first line, which indicates that this view is strongly-typed to our Album class. The Razor view engine
understands that it has been passed an Album object, so we can easily access model properties and even have
the benefit of IntelliSense in the Visual Web Developer editor.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 35

Update the <h2> tag so it displays the Album’s Title property by modifying that line to appear as follows.

<h2>Album: @Model.Title</h2>

Notice that IntelliSense is triggered when you enter the period after the @Model keyword, showing the
properties and methods that the Album class supports.

StoreController.cs B Details.cshtrml* ¢ FAlIR=NE

@model MvcMusicStore.Models.Album

@t

ViewBag.Title = "Details"™;
¥

<h2>Album: @odel.f/h2>
‘@ Equals
ﬁ Genre
‘@ GetHashCode
W GetType
T Title | string Album.Title|
‘W ToString

Let's now re-run our project and visit the /Store/Details/5 URL. We'll see details of an Album like below.

PR @)1 ocamostasoiy sore et |~ ~ & X

ASP.NET MVC MUSIC STORE

Album: Album 5

Now we’ll make a similar update for the Store Browse action method. Update the method so it returns an
ActionResult, and modify the method logic so it creates a new Genre object and returns it to the View.

public ActionResult Browse(string genre)

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 36

var genreModel = new Genre { Name = genre };

return View(genreModel);

}

Right-click in the Browse method and select “Add View...” from the context menu, then add a View that is

strongly-typed add a strongly typed to the Genre class.

i T
TEE
WView name:
Browse
View engine:
| Razor (CSHTML) -

Create a strongly-typed view

Model class:

Genre (MyvchusicStore.Models) -

Scaffold template:
[Empt},r v] Reference script libraries

[] Create as a partial view

Use a layout or master page:

(Leave empty if it is set in a Razor _viewstart file)
ContentPlaceHolder ID

MainContent

| Add || Cancel

Update the <h2> element in the view code (in /Views/Store/Browse.cshtml) to display the Genre information.

@model MvcMusicStore.Models.Genre

@{

ViewBag.Title = "Browse";
}

<h2>Browsing Genre: @Model.Name</h2>

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 37

Now let’s re-run our project and browse to the /Store/Browse?Genre=Disco URL. We’'ll see the Browse page
displayed like below.

PR ol €l tocmos 2664t Brovseieme=iseo | © =] & | X]

m Home Store

ASP.NET MVC MUSIC STORE

Browsing Genre: Disco

Finally, let’s make a slightly more complex update to the Store Index action method and view to display a list of
all the Genres in our store. We’ll do that by using a List of Genres as our model object, rather than just a single
Genre.

public ActionResult Index()

{
var genres = new List<Genre>
{
new Genre { Name = "Disco"},
new Genre { Name = "Jazz"},
new Genre { Name = "Rock"}
}s
return View(genres);
}

Right-click in the Store Index action method and select Add View as before, select Genre as the Model class, and
press the Add button.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 38

e 22
View name:

View engine:

’Hazur (CSHTML) -

Create a strongly-typed view

Model class:

IGen re (MvechusicStore.Models) v'I

Scaffold template:
[Empt_l,r v] Reference script libraries

[] Create as a partial view

Use a layout or master page:

]

(Leave ernpty if it is set in a Razor _viewstart file)

Contentb

m

aceHaolde

MainContent

| Add || Cancel

First we'll change the @model declaration to indicate that the view will be expecting several Genre objects
rather than just one. Change the first line of /Store/Index.cshtml to read as follows:

@model IEnumerable<MvcMusicStore.Models.Genre>

This tells the Razor view engine that it will be working with a model object that can hold several Genre objects.
We're using an IEnumerable<Genre> rather than a List<Genre> since it’s more generic, allowing us to change
our model type later to any object type that supports the IEnumerable interface.

Next, we'll loop through the Genre objects in the model as shown in the completed view code below.

@model IEnumerable<MvcMusicStore.Models.Genre>

@{
}

<h3>Browse Genres</h3>

ViewBag.Title = "Store";

<p>
Select from @Vodel.Count() genres:</p>

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 39

@foreach (var genre in Model)

{
}

@genre.Name</1li>

Notice that we have full IntelliSense support as we enter this code, so that when we type “@Model.” we see all
methods and properties supported by an IEnumerable of type Genre.

fmodel IEnumerable<MvcMusicStore.Models.Genres

@{
ViewBag.Title = “Store";
¥
<h3>Browse Genres</h3>
<p>
select from @odel.C genres:</p>
H “; AsQueryable<» .
@foreach (var genre
I W Average<:
figenre.Name % C3st<> 5
1 W Concat<>
<fuls “; Contains<>

W Count<:>

Wy DefaultlfErmpty<>

“; Distinct<=

Wy ElementAt<: -

Within our “foreach” loop, Visual Web Developer knows that each item is of type Genre, so we see IntelliSence
for each the Genre type.

<ulz
@foreach (var genre in Model)
1
<lixfgenre.</1ix
; 1} W Equals
< >
N ¥ GetHashCode
W GetType
5 Name string Genre.Mame
% ToString

Next, the scaffolding feature examined the Genre object and determined that each will have a Name property,
so it loops through and writes them out. It also generates Edit, Details, and Delete links to each individual item.
We'll take advantage of that later in our store manager, but for now we’d like to have a simple list instead.

When we run the application and browse to /Store, we see that both the count and list of Genres is displayed.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 40

Home Store

ASP.NET MVC MUSIC STORE

Browse Genres

[Select from 3 genres:]

m Disco
m Jazz
m Rock

Adding Links between pages

Our /Store URL that lists Genres currently lists the Genre names simply as plain text. Let’s change this so that
instead of plain text we instead have the Genre names link to the appropriate /Store/Browse URL, so that
clicking on a music genre like “Disco” will navigate to the /Store/Browse?genre=Disco URL. We could update our
\Views\Store\Index.cshtml View template to output these links using code like below (don’t type this in - we’re
going to improve on it):

@foreach (var genre in Model)
{
@genre.Name</1i>
}

That works, but it could lead to trouble later since it relies on a hardcoded string. For instance, if we wanted to
rename the Controller, we'd need to search through our code looking for links that need to be updated.

An alternative approach we can use is to take advantage of an HTML Helper method. ASP.NET MVC includes
HTML Helper methods which are available from our View template code to perform a variety of common tasks
just like this. The Html.ActionLink() helper method is a particularly useful one, and makes it easy to build HTML
<a> links and takes care of annoying details like making sure URL paths are properly URL encoded.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 41

Html.ActionLink() has several different overloads to allow specifying as much information as you need for your
links. In the simplest case, you’ll supply just the link text and the Action method to go to when the hyperlink is
clicked on the client. For example, we can link to “/Store/” Index() method on the Store Details page with the
link text “Go to the Store Index” using the following call:

@Html.ActionLink("Go to the Store Index", "Index")

Note: In this case, we didn’t need to specify the controller name because we’re just linking to another action
within the same controller that’s rendering the current view.

Our links to the Browse page will need to pass a parameter, though, so we’ll use another overload of the
Html.ActionLink method that takes three parameters:

1. Link text, which will display the Genre name
2. Controller action name (Browse)
3. Route parameter values, specifying both the name (Genre) and the value (Genre name)

Putting that all together, here’s how we’ll write those links to the Store Index view:

@foreach (var genre in Model)
{
@Html.ActionLink(genre.Name, "Browse", new { genre = genre.Name })</1li>
}

Now when we run our project again and access the /Store/ URL we will see a list of genres. Each genreis a
hyperlink — when clicked it will take us to our /Store/Browse?genre=[genre] URL.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 42

PN B hitp:/flocalhost 26641 /Store/ 0 = € X

Home Store

ASP.NET MVC MUSIC STORE

Browse Genres
Select from 3 genres:
= Disco

m Jazz
s Rock

The HTML for the genre list looks like this:

Disco </1li>
Jazz </1li>
Rock </1li>

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 43

4. Data Access

So far, we’ve just been passing “dummy data” from our Controllers to our View templates. Now we’re ready to
hook up a real database. In this tutorial we’ll be covering how to use SQL Server Compact Edition (often called
SQL CE) as our database engine. SQL CE is a free, embedded, file based database that doesn’t require any
installation or configuration, which makes it really convenient for local development.

Database access with Entity Framework Code-First

We'll use the Entity Framework (EF) support that is included in ASP.NET MVC 3 projects to query and update the
database. EF is a flexible object relational mapping (ORM) data API that enables developers to query and update
data stored in a database in an object-oriented way.

Entity Framework version 4 supports a development paradigm called code-first. Code-first allows you to
create model object by writing simple classes (also known as POCO from "plain-old" CLR objects), and can
even create the database on the fly from your classes.

Changes to our Model Classes
We will be leveraging the database creation feature in Entity Framework in this tutorial. Before we do that,
though, let’s make a few minor changes to our model classes to add in some things we'll be using later on.

Adding the Artist Model Classes
Our Albums will be associated with Artists, so we’ll add a simple model class to describe an Artist. Add a new
class to the Models folder named Artist.cs using the code shown below.

namespace MvcMusicStore.Models

{
public class Artist
{
public int ArtistId { get; set; }
public string Name { get; set; }
}
}

Updating our Model Classes
Update the Album class as shown below.

namespace MvcMusicStore.Models

{

public class Album

{
public int AlbumId { get; set; }
public int Genreld { get; set; }
public int ArtistId { get; set; }
public string Title { get; set; }
public decimal Price { get; set; }
public string AlbumArtUrl { get; set; }
public Genre Genre { get; set; }
public Artist Artist { get; set; }

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 44

Next, make the following updates to the Genre class.
using System.Collections.Generic;

namespace MvcMusicStore.Models

{
public partial class Genre
{
public int Genreld { get; set; }
public string Name { get; set; }
public string Description { get; set; }
public List<Album> Albums { get; set; }
}
}

Adding the App_Data folder

We’ll add an App_Data directory to our project to hold our SQL Server Express database files. App_Data is a
special directory in ASP.NET which already has the correct security access permissions for database access. From
the Project menu, select Add ASP.NET Folder, then App_Data.

@ MyvcMusicStore - Microsoft Visual Web Developer 2010 Express
File Edit View | Project Debug Tools Window Help

3 Add Class.. Debug || (H :
22 Add Mew Hem... Ctrl+Shift+A
i Add Existing Item... Shift+Alt+A

4 Mew Folder

Add ASP.NET Folder - App_GlobalResources
19 Build Deployment Package App_LocalResources
i% Package/Publish Settings App_Data

Add Reference... App_Browsers

Add Service Reference... Theme

Use IS Express...
Add Deployable Dependencies...
Add Library Package Reference...

@ MwcMusicStore Properties...

ASP.MET Configuration

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 45

Creating a Connection String in the web.config file
We will add a few lines to the website’s configuration file so that Entity Framework knows how to connect to
our database. Double-click on the Web.config file located in the root of the project.

Solution Explorer »* [l X

2| 2z e
5:‘% MwvcMusicStore
> [=d] Properties
- |n3] References

% App_Data
- 1 Content
» | Controllers
» 1 Maodels
> [Scripts
- Views
.ﬁ_’l Global.asax
i packages.config
. ||E=8 Web.config

N\

Scroll to the bottom of this file and add a <connectionStrings> section directly above the last line, as shown

below.

<connectionStrings>
<add name="MusicStoreEntities"
connectionString="Data Source=|DataDirectory|MvcMusicStore.sdf"
providerName="System.Data.SqlServerCe.4.0"/>
</connectionStrings>
</configuration>

Adding a Context Class
Right-click the Models folder and add a new class named MusicStoreEntities.cs.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 46

;‘% MwcMusicStore
> [=d| Properties
|3 References
| App_Data
[Content
3 Controllers
a | Models
#] Album.cs
] Genre.cs
#] MusicStoreEntities.cs
» [Scripts
» L Views
- 4] Global.asax
i packages.config
. 5 Web.config

This class will represent the Entity Framework database context, and will handle our create, read, update, and
delete operations for us. The code for this class is shown below.

using System.Data.Entity;

namespace MvcMusicStore.Models

{
public class MusicStoreEntities : DbContext
{
public DbSet<Album> Albums { get; set; }
public DbSet<Genre> Genres { get; set; }
}
}

That's it - there’s no other configuration, special interfaces, etc. By extending the DbContext base class, our
MusicStoreEntities class is able to handle our database operations for us. Now that we’ve got that hooked up,
let’s add a few more properties to our model classes to take advantage of some of the additional information in

our database.

Adding our store catalog data

We will take advantage of a feature in Entity Framework which adds “seed” data to a newly created database.
This will pre-populate our store catalog with a list of Genres, Artists, and Aloums. The MvcMusicStore-Assets.zip
download - which included our site design files used earlier in this tutorial - has a class file with this seed data,

located in a folder named Code.

Within the Code / Models folder, locate the SampleData.cs file and drop it into the Models folder in our project,

as shown below.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 47

Solution Explorer

=R ST
::‘Q MvcMusicStore
=d] Properties
g References
3 App_Data
d Content
1 Controllers
= Models
-] Album.cs
O] MName 4] Artist.cs

] Genre.cs
#] AccountModels.cs i .
2 4] MusicStoreEntities.cs

|[#]¢#] sampleData.cs] SampleData.cs
[Scripts
d Views
4] Global.asax
i packages.config

Organize = a0 Open Share with + MNew folder

i3 Web.config

1 item selected M Computer

Now we need to add one line of code to tell Entity Framework about that SampleData class. Double-click on the
Global.asax file in the root of the project to open it and add the following line to the top the Application_Start
method.

protected void Application_Start()

{
System.Data.Entity.Database.SetInitializer(new MvcMusicStore.Models.SampleData());
AreaRegistration.RegisterAllAreas();
RegisterGlobalFilters(GlobalFilters.Filters);
RegisterRoutes(RouteTable.Routes);
}

At this point, we’ve completed the work necessary to configure Entity Framework for our project.

Querying the Database

Now let’s update our StoreController so that instead of using “dummy data” it instead calls into our database to
query all of its information. We'll start by declaring a field on the StoreController to hold an instance of the
MusicStoreEntities class, named storeDB:

public class StoreController : Controller

{

MusicStoreEntities storeDB = new MusicStoreEntities();

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 48

Updating the Store Index to query the database

The MusicStoreEntities class is maintained by the Entity Framework and exposes a collection property for each
table in our database. Let’s update our StoreController’s Index action to retrieve all Genres in our database.
Previously we did this by hard-coding string data. Now we can instead just use the Entity Framework context
Generes collection:

public ActionResult Index()

{

var genres = storeDB.Genres.TolList();

return View(genres);

No changes need to happen to our View template since we’re still returning the same StorelndexViewModel we
returned before - we’re just returning live data from our database now.

When we run the project again and visit the “/Store” URL, we’ll now see a list of all Genres in our database:

Home Store
ASP.NET MVC MUSIC STORE E

Browse Genres

Select from 10 genres:

Rock

Jazz

Metal
Alternative
Disco

Indie Music
Latin
Dance
Blues
Classical

Updating Store Browse and Details to use live data

With the /Store/Browse?genre=[some-genre] action method, we’re searching for a Genre by name. We only
expect one result, since we shouldn’t ever have two entries for the same Genre name, and so we can use the
.Single() extension in LINQ to query for the appropriate Genre object like this (don’t type this yet):

var example = storeDB.Genres.Single(g => g.Name == “Disco”);

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 49

The Single method takes a Lambda expression as a parameter, which specifies that we want a single Genre
object such that its name matches the value we’ve defined. In the case above, we are loading a single Genre
object with a Name value matching Disco.

We'll take advantage of an Entity Framework feature that allows us to indicate other related entities we want
loaded as well when the Genre object is retrieved. This feature is called Query Result Shaping, and enables us to
reduce the number of times we need to access the database to retrieve all of the information we need. We want
to pre-fetch the Albums for Genre we retrieve, so we’ll update our query to include from
Genres.Include(“Albums”) to indicate that we want related albums as well. This is more efficient, since it will
retrieve both our Genre and Album data in a single database request.

With the explanations out of the way, here’s how our updated Browse controller action looks:

public ActionResult Browse(string genre)

{
// Retrieve Genre and its Associated Albums from database
var genreModel = storeDB.Genres.Include("Albums")
.Single(g => g.Name == genre);
return View(genreModel);
}

We can now update the Store Browse View to display the albums which are available in each Genre. Open the
view template (found in /Views/Store/Browse.cshtml) and add a bulleted list of Aloums as shown below.

@model MvcMusicStore.Models.Genre

@{
ViewBag.Title = "Browse";
}
<h2>Browsing Genre: @Model.Name</h2>

@foreach (var album in Model.Albums)
{
<1li>
@album.Title
</1li>
}

Running our application and browsing to /Store/Browse?genre=Jazz shows that our results are now being pulled
from the database, displaying all albums in our selected Genre.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 50

@ http://localhost:26641/5tore/Browse?genre=Jazz - QX
P 4

ASP.NET MVC MUSIC STORE

Browsing Genre: Jazz

The Best Of Billy Cobham

Quiet Songs

Worlds

Quanta Gente Veio ver--Bonus De Carnaval
Heart of the Night

IMoming Dance

VWarner 25 Anos

Miles Ahead

The Essential Miles Davis [Disc 1]
The Essential Miles Davis [Disc 2]
Qutbreak

Blue Moods

We’ll make the same change to our /Store/Details/[id] URL, and replace our dummy data with a database query
which loads an Album whose ID matches the parameter value.

public ActionResult Details(int id)

{
var album = storeDB.Albums.Find(id);

return View(album);

}

Running our application and browsing to /Store/Details/1 shows that our results are now being pulled from the
database.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 51

€

'_f_%’ht‘tp:--Iu:ucalhu:ust:.'-_‘ﬁﬁ-ll-Stcre-Details-l] L~ x| & Details <7 fob

Home Store
ASP.NET MVC MUSIC STORE :

Album: The Best Of Men At Work

., A

Now that our Store Details page is set up to display an album by the Album ID, let’s update the Browse view to
link to the Details view. We will use Html.ActionLink, exactly as we did to link from Store Index to Store Browse
at the end of the previous section. The complete source for the Browse view appears below.

@model MvcMusicStore.Models.Genre

@{
ViewBag.Title = "Browse";
}
<h2>Browsing Genre: @Model.Name</h2>

@foreach (var album in Model.Albums)
{
<1li>
@Html.ActionLink(album.Title, "Details", new { id = album.AlbumId })
</1li>
}

We're now able to browse from our Store page to a Genre page, which lists the available albums, and by clicking
on an album we can view details for that album.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 52

e': :'| @ http://localhost 26641 /Store/Browselgenre=lazz O ~ & X | 2 Browse X ’EU\

* Home Store

ASP.NET MVC MUSIC STORE

Browsing Genre: Jazz

s Worlds

Quiet Songs

Warner 25 Anos

The Best Of Billy Cobham
Outbreak

Quanta Gente Veio ver-Boénus De Carnaval
Blue Moods

Miles Ahead

The Essential Miles Davis [Disc 1]
The Essential Miles Davis [Disc 2]
Heart of the Night

Morning Dance

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 53

5. Edit Forms using Scaffolding
In the past chapter, we were loading data from our database and displaying it. In this chapter, we'll also enable
editing the data.

Creating the StoreManagerController

WEe'll begin by creating a new controller called StoreManagerController. For this controller, we will be taking
advantage of the Scaffolding features available in the ASP.NET MVC 3 Tools Update. Set the options for the Add
Controller dialog as shown below.

r |

Add Controller 2

Controller name:

|StareManagerCantrn:nller

Scaffolding options
Temnplate:

[Cuntmller with read/write actions and views, using Entity Framework v]]

Model class:
|A|bum (MvcPAusicStore.Models) v]

Data context class:

IMusicStn reEntities (MvchusicStore.Models) vl

Views:

|Razor (CSHTML) | | Advenced Options.. |

| Add || Cancel |

b, m

When you click the Add button, you'll see that the ASP.NET MVC 3 scaffolding mechanism does a good amount
of work for you:

e |t creates the new StoreManagerController with a local Entity Framework variable

e |t adds a StoreManager folder to the project’s Views folder

e |t adds Create.cshtml, Delete.cshtml, Details.cshtml, Edit.cshtml, and Index.cshtml view, strongly typed
to the Album class

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 54

@ MuvcMusicStore - Microsoft Visual Web Developer 2010 Express | = | & R |

File Edit View Project Debug Data Tools Window Help
Pl S| K D@9 - ¢ | b G [Debug][] || & .
e SE L et

StoreManagerController.cs > BUTLEELin] Details.cshtml Create.cshtml

% MvcMusicStore. Controllers.StoreManagerCo ~| 2% db | 2 2] | SN

—lusing System; _f,g MvcMusicStore
using System.Collections.Generic; = Properties
using System.Data;
us:ang :ys:em,f?ta,Entlty,' 1 App_Data
using System.Ling; Eg Content
using System.Web; - ¢ i
using System.Web.Mvc; Bppcontipliers
using MvcMusicStore.Models;] HomeController.cs

#] StoreController.cs

—Inamespace MvcMusicStore.Controllers #] StoreManagerController.c
{ [d Moedels

= public class StoreManagerControeller : Controller [Scripts

1

>

X0g|oo |

3] References

=7 Views
» [Home
' > [Shared
// GET: /StoreManager/ 4 [Store
‘f_;a] Browse.cshtml
public ViewResult Index() cf_ﬂ Details.cehtml

{] Index.cshtml
var albums = db.Albums.Include{a => a.Genre).Include(a =3

return View(albums.Tolist());

private MusicStoreEntities db = new MusicStoreEntities();

| StoreManager

3 4] Create.cshtml
4] Delete.cshtm|

i c:@] Details.cshtml

// GET: /StoreManager/Details/5 iz Edit.cshtml
4] Index.cshtml

public ViewResult Details(int id) cf_ﬂ _ViewStart.cshtml

{ i Web.config
Album album = db.Albums.Find(id}; 4 | 1

m | £ Solution Expl... [CSNIEEIEEY M

B Output ﬂ Error List

Ready

The new StoreManager controller class includes CRUD (create, read, update, delete) controller actions which
know how to work with the Aloum model class and use our Entity Framework context for database access.

Modifying a Scaffolded View

It's important to remember that, while this code was generated for us, it’s standard ASP.NET MVC code, just like
we’ve been writing throughout this tutorial. It’s intended to save you the time you’d spend on writing
boilerplate controller code and creating the strongly typed views manually, but this isn’t the kind of generated
code you may have seen prefaced with dire warnings in comments about how you mustn’t change the code.
This is your code, and you’re expected to change it.

So, let’s start with a quick edit to the StoreManager Index view (/Views/StoreManager/Index.cshtml). This view
will display a table which lists the Albums in our store with Edit / Details / Delete links, and includes the Album’s
public properties. We'll remove the AlbumArtUrl field, as it’s not very useful in this display. In <table> section of

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 55

the view code, remove the <th> and <td> elements surrounding AloumArtUrl references, as indicated by the
highlighted lines below:

<table>
<tr>
<th>
Genre
</th>
<th>
Artist
</th>
<th>
Title
</th>
<th>
Price
</th>
<th>
AlbumArtUrl
</th>
<th></th>
</tr>

@foreach (var item in Model) {

<tr>

<td>
@Html.DisplayFor(modelItem => item.Genre.Name)

</td>

<td>
@Html.DisplayFor(modelItem => item.Artist.Name)

</td>

<td>
@Html.DisplayFor(modelItem => item.Title)

</td>

<td>
@Html.DisplayFor(modelItem => item.Price)

</td>

<td>
@Html.DisplayFor(modelItem => item.AlbumArtUrl)

</td>

<td>
@Html.ActionLink("Edit", "Edit", new { id=item.AlbumId }) |
@Html.ActionLink("Details", "Details", new { id=item.AlbumId }) |
@Html.ActionLink("Delete", "Delete", new { id=item.AlbumId })

</td>

</tr>
}
</table>

The modified view code will appear as follows:

@model IEnumerable<MvcMusicStore.Models.Album>

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 56

@
}

<h2>Index</h2>

ViewBag.Title = "Index";

<p>
@Html.ActionLink("Create New", "Create")
</p>
<table>
<tr>
<th>
Genre
</th>
<th>
Artist
</th>
<th>
Title
</th>
<th>
Price
</th>
<th></th>
</tr>

@foreach (var item in Model) {

<tr>
<td>
@Html.DisplayFor(modelItem => item.Genre.Name)
</td>
<td>
@Html.DisplayFor(modelItem => item.Artist.Name)
</td>
<td>
@Html.DisplayFor(modelItem => item.Title)
</td>
<td>
@Html.DisplayFor(modelItem => item.Price)
</td>
<td>
@Html.ActionlLink("Edit", "Edit", new { id=item.AlbumId }) |
@Html.ActionLink("Details", "Details", new { id=item.AlbumId }) |
@Html.ActionLink("Delete", "Delete", new { id=item.AlbumId })
</td>
</tr>
}
</table>

A first look at the Store Manager
Now run the application and browse to /StoreManager/. This displays the Store Manager Index we just
modified, showing a list of the albums in the store with links to Edit, Details, and Delete.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 57

(ESRER™)

'| & nitp://localhost:26641/StoreManager D~ X H 2 Index X oy ﬁﬁ? C:=

@ Home Store e
ASP.NET MVC MUSIC STORE E
Index
Create New
[Gowe At ot eie |
Rock Men At Work The Best Of Men At Work 8.99 Edit| Details | Delete
Rock AC/DC For Those About To Rock We Salute You 899 Edit | Details | Delete)
Rock AC/DC Let There Be Rock 8.99 Edit| Details | Delete
Rock Accept Balls to the Wall 8.99 Edit| Details | Delete
Rock Accept Restless and Wild 8.99 Edit| Details | Delete
Rock Aerosmith Big Ones 8.99 Edit| Details | Delete
Rock Alanis Morissette Jagged Littie Pil 8.99 Edit| Details | Delete
Rock Alice In Chains Facelift 8.99 Edit| Details | Delete
Rock Audioslave Audioslave 8.99 Edit| Details | Delete
Rock Creedence Clearwater Revival Chronicle, Vol. 1 8.99 Edit| Details | Delete
Rock Creedence Clearwater Revival Chronicle, Vol. 2 8.99 Edit| Details | Delete
Rock David Coverdale Into The Light 8.99 Edit| Details | Delete
Rock Deep Purple Come Taste The Band 8.99 Edit| Details | Delete
\ Rock Deep Purple Deep Purple In Rock 899 Edit| Details | Deletel M

Clicking the Edit link displays an edit form with fields for the Album, including dropdowns for Genre and Artist.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 58

[ESREEN™)

e'._ "@ http://localhost:26641/StoreManager/Edit’l 2@ ~ & X‘ 2 Edit o G} T? :H

= Home Store
ASP.NET MVC MUSIC STORE :

Edit

— Album
Genre

'Rock B3
Avrtist
| Men At Work [~]
Title
[The Best Of Men At Work |

Price
8.99 |

AlbumArtUrl
[IContent/images/placeholder gif |

Back to List

e A

Click the “Back to List” link at the bottom, then click on the Details link for an Aloum. This displays the detail
information for an individual Album.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 59

-

a' |@- hitp://localhost:26641 /StoreManager/Details © ~ & X | & Details

ASP.NET MVC MUSIC STORE

Home |

Store

Details

— Album

Genre

Aurtist

Title

The Best Of Men At Work

Price

5.99

AlbumArtUrl
/Content/images/placeholder.gif

L

Again, click the Back to List link, then click on a Delete link. This displays a confirmation dialog, showing the

album details and asking if we’re sure we want to delete it.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 60

:% http://localhost: 26641 /StorefManager/Delete/2 D~ x ‘ f_% Delete

=

Home Store
ASP.NET MVC MUSIC STORE :

Delete

Are you sure you want to delete this?

— Album

Genre

Artist

Title

For Those About To Rock We Salute You
Price

8.99

AlbumArtUr

{Content/mages/plac eholder.gif

e]

., A

Clicking the Delete button at the bottom will delete the album and return you to the Index page, which shows
the album deleted.

We're not done with the Store Manager, but we have working controller and view code for the CRUD operations
to start from.

Looking at the Store Manager Controller code

The Store Manager Controller contains a good amount of code. Let’s go through this from top to bottom. The
controller includes some standard namespaces for an MVC controller, as well as a reference to our Models
namespace. The controller has a private instance of MusicStoreEntities, used by each of the controller actions
for data access.

using System;

using System.Collections.Generic;
using System.Data;

using System.Data.Entity;

using System.Ling;

using System.Web;

using System.Web.Mvc;

using MvcMusicStore.Models;

namespace MvcMusicStore.Controllers

{

public class StoreManagerController : Controller

{

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 61

private MusicStoreEntities db = new MusicStoreEntities();

Store Manager Index and Details actions

The index view retrieves a list of Albums, including each album’s referenced Genre and Artist information, as we
previously saw when working on the Store Browse method. The Index view is following the references to the
linked objects so that it can display each album’s Genre name and Artist name, so the controller is being
efficient and querying for this information in the original request.

//
// GET: /StoreManager/

public ViewResult Index()
{

var albums = db.Albums.Include(a => a.Genre).Include(a => a.Artist);
return View(albums.TolList());

}

The StoreManager Controller’s Details controller action works exactly the same as the Store Controller Details
action we wrote previously - it queries for the Aloum by ID using the Find() method, then returns it to the view.

//
// GET: /StoreManager/Details/5

public ViewResult Details(int id)

{
Album album = db.Albums.Find(id);

return View(album);

}

The Create Action Methods

The Create action methods are a little different from ones we’ve seen so far, because they handle form input.
When a user first visits /StoreManager/Create/ they will be shown an empty form. This HTML page will contain a
<form> element that contains dropdown and textbox input elements where they can enter the album’s details.

After the user fills in the Album form values, they can press the “Save” button to submit these changes back to
our application to save within the database. When the user presses the “save” button the <form> will perform
an HTTP-POST back to the /StoreManager/Create/ URL and submit the <form> values as part of the HTTP-POST.

ASP.NET MVC allows us to easily split up the logic of these two URL invocation scenarios by enabling us to
implement two separate “Create” action methods within our StoreManagerController class — one to handle the
initial HTTP-GET browse to the /StoreManager/Create/ URL, and the other to handle the HTTP-POST of the
submitted changes.

Passing information to a View using ViewBag
We've used the ViewBag earlier in this tutorial, but haven’t talked much about it. The ViewBag allows us to pass
information to the view without using a strongly typed model object. In this case, our Edit HTTP-GET controller

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 62

action needs to pass both a list of Genres and Artists to the form to populate the dropdowns, and the simplest
way to do that is to return them as ViewBag items.

The ViewBag is a dynamic object, meaning that you can type ViewBag.Foo or ViewBag.YourNameHere without
writing code to define those properties. In this case, the controller code uses ViewBag.Genreld and
ViewBag.Artistld so that the dropdown values submitted with the form will be Genreld and Artistld, which are
the Album properties they will be setting.

These dropdown values are returned to the form using the SelectList object, which is built just for that purpose.
This is done using code like this:

ViewBag.GenreId = new SelectList(db.Genres, "GenreId", "Name");

As you can see from the action method code, three parameters are being used to create this object:

e The list of items the dropdown will be displaying. Note that this isn’t just a string - we’re passing a list of
Genres.

e The next parameter being passed to the SelectList is the Selected Value. This how the SelectList knows
how to pre-select an item in the list. This will be easier to understand when we look at the Edit form,
which is pretty similar.

e The final parameter is the property to be displayed. In this case, this is indicating that the Genre.Name
property is what will be shown to the user.

With that in mind, then, the HTTP-GET Create action is pretty simple - two SelectLists are added to the ViewBag,
and no model object is passed to the form (since it hasn’t been created yet).

//
// GET: /StoreManager/Create

public ActionResult Create()

{
ViewBag.Genreld = new SelectlList(db.Genres, "GenreId", "Name");
ViewBag.ArtistId = new SelectList(db.Artists, "ArtistId", "Name");
return View();

}

HTML Helpers to display the Drop Downs in the Create View

Since we’ve talked about how the drop down values are passed to the view, let’s take a quick look at the view to
see how those values are displayed. In the view code (/Views/StoreManager/Create.cshtml), you'll see the
following call is made to display the Genre drop down.

@Html.DropDownList("GenreId", String.Empty)

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 63

This is known as an HTML Helper - a utility method which performs a common view task. HTML Helpers are very
useful in keeping our view code concise and readable. The Html.DropDownlList helper is provided by ASP.NET
MVC, but as we’ll see later it’s possible to create our own helpers for view code we’ll reuse in our application.

The Html.DropDownlList call just needs to be told two things - where to get the list to display, and what value (if
any) should be pre-selected. The first parameter, Genreld, tells the DropDownlList to look for a value named
Genreld in either the model or ViewBag. The second parameter is used to indicate the value to show as initially
selected in the drop down list. Since this form is a Create form, there’s no value to be preselected and
String.Empty is passed.

Handling the Posted Form values

As we discussed before, there are two action methods associated with each form. The first handles the HTTP-
GET request and displays the form. The second handles the HTTP-POST request, which contains the submitted
form values. Notice that controller action has an [HttpPost] attribute, which tells ASP.NET MVC that it should
only respond to HTTP-POST requests.

//
// POST: /StoreManager/Create
[HttpPost]
public ActionResult Create(Album album)
{
if (ModelState.IsValid)
{
db.Albums.Add(album);
db.SaveChanges();
return RedirectToAction("Index");
}

ViewBag.GenrelId = new SelectList(db.Genres, "GenreId", "Name", album.Genreld);
ViewBag.ArtistId = new SelectList(db.Artists, "ArtistId", "Name", album.ArtistId);
return View(album);

}

This action has four responsibilities:

Read the form values
Check if the form values pass any validation rules
If the form submission is valid, save the data and display the updated list

i e

If the form submission is not valid, redisplay the form with validation errors

Reading Form Values with Model Binding

The controller action is processing a form submission that includes values for Genreld and Artistld (from the
drop down list) and textbox values for Title, Price, and AloumArtUrl. While it’s possible to directly access form
values, a better approach is to use the Model Binding capabilities built into ASP.NET MVC. When a controller
action takes a model type as a parameter, ASP.NET MVC will attempt to populate an object of that type using
form inputs (as well as route and querystring values). It does this by looking for values whose names match
properties of the model object, e.g. when setting the new Album object’s Genreld value, it looks for an input

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 64

with the name Genreld. When you create views using the standard methods in ASP.NET MVC, the forms will
always be rendered using property names as input field names, so this the field names will just match up.

Validating the Model

The model is validated with a simple call to ModelState.lsValid. We haven’t added any validation rules to our
Album class yet - we’ll do that in a bit - so right now this check doesn’t have much to do. What’s important is
that this ModelStat.IsValid check will adapt to the validation rules we put on our model, so future changes to
validation rules won’t require any updates to the controller action code.

Saving the submitted values
If the form submission passes validation, it’s time to save the values to the database. With Entity Framework,
that just requires adding the model to the Albums collection and calling SaveChanges.

db.Albums.Add(album);
db.SaveChanges();

Entity Framework generates the appropriate SQL commands to persist the value. After saving the data, we
redirect back to the list of Albums so we can see our update. This is done by returning RedirectToAction with the
name of the controller action we want displayed. In this case, that’s the Index method.

Displaying invalid form submissions with Validation Errors

In the case of invalid form input, the dropdown values are added to the ViewBag (as in the HTTP-GET case) and
the bound model values are passed back to the view for display. Validation errors are automatically displayed
using the @Html.ValidationMessageFor HTML Helper.

Testing the Create Form
To test this out, run the application and browse to /StoreManager/Create/ - this will show you the blank form
which was returned by the StoreController Create HTTP-GET method.

Fill in some values and click the Create button to submit the form.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 65

|| & http://localhost:26641/StoreManager/Create L-ax ” i% Create | ‘ i 2

Home Store
ASP.NET MVC MUSIC STORE E

Create

— Album

Genre

[Pop [~]
Artist

[Donna Summer [~]

Title
Uon Galloway and Donna Summer Sing! |

Price
50.00 |

AlbumArtUrl
IContent/Images/placeholder gif |

Jazz Miles Davis Miles Ahead 8.99 | |
Jazz Miles Davis The Essential Miles Davis [Disc 1] 8.99 | |
Jazz Miles Davis The Essential Miles Davis [Disc 2] 8.99 | |
Jazz Spyro Gyra Heart of the Night 8.99 | |
Jazz Spyro Gyra Moming Dance 8.99 | |
Pop Donna Summer -— Jon Galloway and Donna Summer Sing! 50.00 | |
Pop Amy Winehouse Frank 8.99 | |

Handling Edits

The Edit action pair (HTTP-GET and HTTP-POST) are very similar to the Create action methods we just looked at.
Since the edit scenario involves working with an existing album, the Edit HTTP-GET method loads the Album
based on the “id” parameter, passed in via the route. This code for retrieving an album by Albumld is the same
as we've previously looked at in the Details controller action. As with the Create / HTTP-GET method, the drop
down values are returned via the ViewBag. This allows us to return an Aloum as our model object to the view
(which is strongly typed to the Album class) while passing additional data (e.g. a list of Genres) via the ViewBag.

//
// GET: /StoreManager/Edit/5

public ActionResult Edit(int id)

{
Album album = db.Albums.Find(id);
ViewBag.Genreld = new SelectList(db.Genres, "GenreId", "Name", album.Genreld);
ViewBag.ArtistId = new SelectList(db.Artists, "ArtistId", "Name", album.ArtistId);
return View(album);

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 66

}

The Edit HTTP-POST action is very similar to the Create HTTP-POST action. The only difference is that instead of
adding a new album to the db.Albums collection, we’re finding the current instance of the Aloum using
db.Entry(album) and setting its state to Modified. This tells Entity Framework that we are modifying an existing
album as opposed to creating a new one.

//
// POST: /StoreManager/Edit/5
[HttpPost]
public ActionResult Edit(Album album)
{
if (ModelState.IsValid)
{
db.Entry(album).State = EntityState.Modified;
db.SaveChanges();
return RedirectToAction("Index");
¥

ViewBag.GenrelId = new SelectList(db.Genres, "GenreId", "Name", album.Genreld);
ViewBag.ArtistId = new SelectList(db.Artists, "ArtistId", "Name", album.ArtistId);
return View(album);

}

We can test this out by running the application and browsing to /StoreManger/, then clicking the Edit link for an

album.
Rock Men At Work The Best Of Men At Work §.99 | Edit | Details | Delete
Rock ACI/DC For Those About To Rock We Salute You § Edit | Details | Delete
Rock ACI/DC Let There Be Rock 99 Edit | Details | Delete
Rock Accept Balls to the Wall 8§99 Edit | Details | Delete
Rock Accept Restless and Wild 8§99 Edit | Details | Delete
Rock Aerosmith Big Ones 8§99 Edit | Details | Delete

This displays the Edit form shown by the Edit HTTP-GET method. Fill in some values and click the Save button.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 67

— Album

Genre

[Disco [~]
Artist

|Men At Work [« |

Title
[The Worst Of Men At Work |

Price
f0.99 |

AlbumArtUn
IContent/iImages/placeholder gif |

This posts the form, saves the values, and returns us to the Album list, showing that the values were updated.

Jazz Spyro Gyra Heart of the Night 8.99 | |
Jazz Spyro Gyra Moming Dance 5.99 | |
Pop Amy Winehouse Frank 5.99 | |
Pop Various Artists Axé Bahia 2001 5.99 | |
Disco Men At Work -‘ The Worst OFf Men At Work 10.99 | |
Disco Anita Ward Ring My Bell 5.99 | |

Handling Deletion
Deletion follows the same pattern as Edit and Create, using one controller action to display the confirmation
form, and another controller action to handle the form submission.

The HTTP-GET Delete controller action is exactly the same as our previous Store Manager Details controller
action.

//
// GET: /StoreManager/Delete/5

public ActionResult Delete(int id)

{
Album album = db.Albums.Find(id);

return View(album);

}

We display a form that’s strongly typed to an Album type, using the Delete view content template.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 68

-

a' |':% http://localhost: 26641 /StorefManager/Delete/2 D~ x ‘ @ Delete

Home
ASP.NET MVC MUSIC STORE

Store

Delete

Are you sure you want to delete this?

— Album

Genre

Artist

Title

For Those About To Rock We Salute You
Price

8.99

AlbumArtUr

{Content/mages/plac eholder.gif

e]

.,

The Delete template shows all the fields for the model, but we can simplify that down quite a bit. Change the

view code in /Views/StoreManager/Delete.cshtml to the following.
@model MvcMusicStore.Models.Album

@{
}

<h2>Delete Confirmation</h2>

ViewBag.Title = "Delete";

<p>Are you sure you want to delete the album titled
@Model.Title?

</p>
@using (Html.BeginForm()) {
<p>
<input type="submit" value="Delete" />
</p>
<p>
@Html.ActionLink("Back to List", "Index")
</p>

}

This displays a simplified Delete confirmation.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 69

& http://localhost:26641/StoreManager/Delete/2 2 ~ & X |

(22 Delete

ASP.NET MVC MUSIC STORE

Home Store

Delete Confirmation

Are you sure you want to delete the album titled For Those About To Rock We Salute You?

b

el

Clicking the Delete button causes the form to be posted back to the server, which executes the DeleteConfirmed

action.

//
// POST: /StoreManager/Delete/5

[HttpPost, ActionName("Delete")]
public ActionResult DeleteConfirmed(int id)

{
Album album = db.Albums.Find(id);

db.Albums.Remove(album);
db.SaveChanges();
return RedirectToAction("Index");

}

Our HTTP-POST Delete Controller Action takes the following actions:

1. Loads the Album by ID
2. Deletes it the album and save changes

3. Redirects to the Index, showing that the Aloum was removed from the list

To test this, run the application and browse to /StoreManager. Select an album from the list and click the Delete

link.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License

Page 70

e o | @ http://localhost:26641/5toreManager

0~ OXH@Index

Home Store

ASP.NET MVC MUSIC STORE

Index

Create New

[Conve A 0 e P
Rock Men At Work The Best Of Men At Work 8.99 Edit | Details | Delete
Rock AC/DC For Those About To Rock We Salute You 8.99 Edit | Details | Delete
Rock AC/DC Let There Be Rock 8.99 Edit | Details | Delete
Rock Accept Balls to the Wall Edit | Details | Delete
Rock Accept Restless and Wild it | Details | Delete
Rock Aerosmith Big Ones 8.99 Edit jls | Delete
Rock Alanis Morissette Jagged Little Pill 8.99 Edit | Details | Delete]
Rock Alice In Chains Facelift 8.99 Edit | Details | Delete
Rock Audioslave Audioslave 8.99 Edit | Details | Delete
Rock Creedence Clearwater Revival Chronicle, Vol. 1 8.99 Edit | Details | Delete
Rock Creedence Clearwater Revival Chronicle, Vol. 2 8.99 Edit | Details | Delete
Rock David Coverdale Into The Light 8.99 Edit | Details | Delete
Rock Deep Purple Come Taste The Band 8.99 Edit | Details | Delete

This displays our Delete confirmation screen.

-

ESRIER)

ef :ﬁ" B http://localhost 26641 /StoreManager/Delete/7 O = & X | & Delete

P
L

oG5

ASP.NET MVC MUSIC STORE

Home Store

Delete Confirmation
Are you sure you want to delete the album titied Jagged Little Pill?

Back to List

Clicking the Delete button removes the album and returns us to the Store Manager Index page, which shows
that the album has been deleted.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 71

e[: : l|@ http://localhost:26641/5toreManager

p'OXH@Index Xu

| =

= = |
{n T 5

oGh

ASP.NET MVC MUSIC STORE

Home Store

Index

Create New

Rock Men At Work The Best Of Men At Work 8.99 Edit | Details | Delete
Rock AC/DC For Those About To Rock We Salute You 8.99 Edit | Details | Delete
Rock AC/DC Let There Be Rock 899 Edit | Details | Delete
Rock Accept Balls to the Wall 8.99 Edit | Details | Delete
Rock Accept Restless and Wild 8.99 Edit | Details | Delete
Rock Aerosmith Big Ones 899 Edit | Details | Delete
Rock Alice In Chains Facelift 899 Edit | Details | Delete
Rock Audioslave _Auc‘ioﬁve 8.99 Edit | Details | Delete
Rock Creedence Clearwater Revival Chronicle, Vol. 1 8.99 Edit | Details | Delete
Rock Creedence Clearwater Revival Chronicle, Vol. 2 899 Edit | Details | Delete

Using a custom HTML Helper to truncate text

We've got one potential issue with our Store Manager Index page. Our Album Title and Artist Name properties
can both be long enough that they could throw off our table formatting. We'll create a custom HTML Helper to
allow us to easily truncate these and other properties in our Views.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 72

(= @] = |
el,_ :l| & hitp://localhost:26641/StoreMa O ~ & X ‘ & Index » o "iff’ ‘iﬁ?
Home Store B
ASP.NET MVC MUSIC STORE k
Index
Create New
[Genve Aot e pdee]
Rock Men At Work The Best Of Men At Wiork 8.99 Edit | Details | Delete
Rock AC/DC For Those About To Rock W... | 8.99 Edit | Details | Delete
Rock AC/DC Let There Be Rock 8.99 Edit | Details | Delete
Rock Accept Balls to the Wall 899 Edit | Details | Delete
Rock Accept Restless and Wild 899 Edit | Details | Delete
Rock Aerosmith Big Ones 899 Edit | Details | Delete
Rock Alice In Chains Facelift 899 Edit | Details | Delete
Rock Audioslave Audioslave 899 Edit | Details | Delete
Rock Creedence Clearwater Revi...| Chronicle, Vol. 1 8.99 Edit | Details | Delete
Rock Creedence Clearwater Revi...]| Chronicle, Vol. 2 8.99 Edit | Details | Delete
Rock David Coverdale Into The Light 8.99 Edit | Details | Delete
Rock Deep Purple Come Taste The Band 8.99 Edit | Details | Delete
Rock Deep Purple Deep Purple In Rock 8.99 Edit | Details | Delete
Rock Deep Purple Fireball 899 Edit | Details | Delete
Rock Deep Purple Machine Head 899 Edit | Details | Delete
Rock Deep Purple IMKIIIThe Final Concerts. .. | 899 Edit | Details | Delete
Rock Deep Purple Purpendicular 899 Edit | Details | Delete I

Razor’s @helper syntax has made it pretty easy to create your own helper functions for use in your views. Open
the /Views/StoreManager/Index.cshtml view and add the following code directly after the @model line.

@helper Truncate(string input, int length)

{
if (input.Length <= length) {
@input
} else {
@input.Substring(@, length)<text>...</text>
}
}

This helper method takes a string and a maximum length to allow. If the text supplied is shorter than the length
specified, the helper outputs it as-is. If it is longer, then it truncates the text and renders “...” for the remainder.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 73

Now we can use our Truncate helper to ensure that both the Aloum Title and Artist Name properties are less
than 25 characters. The complete view code using our new Truncate helper appears below.

@model IEnumerable<MvcMusicStore.Models.Album>

@helper Truncate(string input, int length)

{
if (input.Length <= length) {
@input
} else {
@input.Substring(@, length)<text>...</text>
}
}
@{
ViewBag.Title = "Index";
}
<h2>Index</h2>
<p>
@Html.ActionLink("Create New", "Create")
</p>
<table>
<tr>
<th>
Genre
</th>
<th>
Artist
</th>
<th>
Title
</th>
<th>
Price
</th>
<th></th>
</tr>

@foreach (var item in Model) {
<tr>
<td>
@Html.DisplayFor(modelItem => item.Genre.Name)
</td>
<td>
@Truncate(item.Artist.Name, 25)
</td>
<td>
@Truncate(item.Title, 25)
</td>
<td>
@Html.DisplayFor(modelItem => item.Price)
</td>

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 74

<td>

@Html.ActionLink("Edit", "Edit", new { id=item.AlbumId }) |
@Html.ActionLink("Details", "Details", new { id=item.AlbumId }) |
@Html.ActionLink("Delete", "Delete", new { id=item.AlbumId })

</td>
</tr>
}

</table>

Now when we browse the /StoreManager/ URL, the aloums and titles are kept below our maximum lengths.

e[: : ;l| B http://localhost:26641/StoreMa O ~ & X ‘

E Index

= @ =

in

<\ £o}

[P T

* Home Store

ASP.NET MVC MUSIC STORE E

Index

Create New

lGore At e ke |
Rock Men At Work The Best Of Men At Work 899 Edit | Details | Delete
Rock AC/DC For Those About To Rock W._. | 8.99 Edit | Details | Delete
Rock AC/DC Let There Be Rock 899 Edit | Details | Delete
Rock Accept Balls to the Wall 8.99 Edit | Details | Delete
Rock Accept Restless and Wild 8.99 Edit | Details | Delete
Rock Aerosmith Big Ones 8.99 Edit | Details | Delete
Rock Alice In Chains Facelift 8.99 Edit | Details | Delete
Rock Audioslave Audioslave 899 Edit | Details | Delete
Rock Creedence Clearwater Revi...| Chronicle, Vol. 1 899 Edit | Details | Delete
Rock Creedence Clearwater Revi._| Chronicle, Vol. 2 899 Edit | Details | Delete
Rock David Coverdale Into The Light 899 Edit | Details | Delete
Rock Deep Purple Come Taste The Band 899 Edit | Details | Delete
Rock Deep Purple Deep Purple In Rock 8.99 Edit | Details | Delete
Rock Deep Purple Fireball 8.99 Edit | Details | Delete
Rock Deep Purple Machine Head 8.99 Edit | Details | Delete
Rock Deep Purple |MKIHTheFHmICmmeﬂa" | 899 Edit | Details | Delete
Rock Deep Purple Purpendicular 8.99 Edit | Details | Delete

-

m

Note: This shows the simple case of creating and using a helper in one view. To learn more about creating
helpers that you can use throughout your site, see my blog post: http://bit.ly/mvc3-helper-options

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License

Page 75

http://bit.ly/mvc3-helper-options

6. Using Data Annotations for Model Validation

We have a major issue with our Create and Edit forms: they’re not doing any validation. We can do things like
leave required fields blank or type letters in the Price field, and the first error we’ll see is from the database.

We can easily add validation to our application by adding Data Annotations to our model classes. Data
Annotations allow us to describe the rules we want applied to our model properties, and ASP.NET MVC will take

care of enforcing them and displaying appropriate messages to our users.

Adding Validation to our Album Forms
We'll use the following Data Annotation attributes:

Note: For more information on Model Validation using Data Annotation attributes, see the MSDN documentation

Required — Indicates that the property is a required field

DisplayName — Defines the text we want used on form fields and validation messages
StringLength — Defines a maximum length for a string field

Range — Gives a maximum and minimum value for a numeric field

Bind — Lists fields to exclude or include when binding parameter or form values to model properties
ScaffoldColumn — Allows hiding fields from editor forms

at http://qgo.microsoft.com/fwlink/?Linkld=159063

Open the Album class and add the following using statements to the top.

using System.ComponentModel;
using System.ComponentModel.DataAnnotations;
using System.Web.Mvc;

Next, update the properties to add display and validation attributes as shown below.

namespace MvcMusicStore.Models

{

[Bind(Exclude = "AlbumId")]
public class Album

{

[ScaffoldColumn(false)]

public int AlbumId { get; set; }
[DisplayName("Genre")]

public int Genreld { get; set; }
[DisplayName("Artist")]

public int ArtistId { get; set; }
[Required(ErrorMessage = "An Album Title is required")]
[StringLength(160)]

public string Title { get; set; }

[Required(ErrorMessage = "Price is required")]
[Range(0.01, 100.00,
ErrorMessage = "Price must be between 0.01 and 100.00")]

public decimal Price { get; set; }

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 76

http://go.microsoft.com/fwlink/?LinkId=159063

[DisplayName("Album Art URL")]
[StringlLength(1024)]
public string AlbumArtUrl { get; set; }

public virtual Genre Genre { get; set; }
public virtual Artist Artist { get; set; }

While we’re there, we’ve also changed the Genre and Artist to virtual properties. This allows Entity Framework

to lazy-load them as necessary.

public virtual Genre Genre { get; set; }
public virtual Artist Artist { get; set; }

After having added these attributes to our Album model, our Create and Edit screen immediately begin
validating fields and using the Display Names we’ve chosen (e.g. Aloum Art Url instead of AloumArtUrl). Run the
application and browse to /StoreManager/Create.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 77

-

L.

ESRIER™)

e' ::'| & nhttp://localhost:26641 /StoreManager/Create O ~ & X |

@ Create

Ll
L

i

;-LJ"

ey

co

2

Trd

ASP.NET MVC MUSIC STORE

Home Store

Create

— Album

Genre

Autist

Title

Price

Album Art URL

Back to List

_

Next, we’ll break some validation rules. Enter a price of 0 and leave the Title blank. When we click on the Create
button, we will see the form displayed with validation error messages showing which fields did not meet the
validation rules we have defined.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License

Page 78

al | @ http://localhost: 26641 /StoreManager/Create O = & X | (2 Create

Home Store
ASP.NET MVC MUSIC STORE E

Create

— Album

Genre
| =]
Artist

| =]

Title
| | An Album Title is required

Price
0| | Price must be between 0.01 and 100.00

Album Art URL

b

Testing the Client-Side Validation
Server-side validation is very important from an application perspective, because users can circumvent client-
side validation. However, webpage forms which only implement server-side validation exhibit three significant

problems.

1. The user has to wait for the form to be posted, validated on the server, and for the response to be sent
to their browser.
2. The user doesn’t get immediate feedback when they correct a field so that it now passes the validation

rules.
3. We are wasting server resources to perform validation logic instead of leveraging the user’s browser.

Fortunately, the ASP.NET MVC 3 scaffold templates have client-side validation built in, requiring no additional
work whatsoever.

Typing a single letter in the Title field satisfies the validation requirements, so the validation message is

immediately removed.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 79

e ':? @ hitp://localhost:26641/StoreManager/Create - H @ Create

* Home Store

ASP.NET MVC MUSIC STORE

Create

— Create Album

Genre
| Alternative EI

Artist
|Aar0n Copland & London Symphony Grchestrdzl

Title ¢

| Price must be between 0.01 and 100.00

Album Art URL

Create

Back to List

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 80

7. Membership and Authorization
Our Store Manager controller is currently accessible to anyone visiting our site. Let’s change this to restrict
permission to site administrators.

Adding the AccountController and Views

One difference between the full ASP.NET MVC 3 Web Application template and the ASP.NET MVC 3 Empty Web
Application template is that the empty template doesn’t include an Account Controller. We'll add an Account
Controller by copying a few files from a new ASP.NET MVC application created from the full ASP.NET MVC 3 Web
Application template.

The MvcMusicStore-Assets.zip download - which included our site design files from the beginning of the tutorial
- has all the AccountController files you’ll need to add located in a folder named Code. Copy the following files
into the same directories in our project:

1. Copy AccountController.cs in the Controllers directory
2. Copy AccountModels.cs in the Models directory
3. Create an Account directory inside the Views directory and copy all four views in

Change the namespace for the Controller and Model classes so they begin with MvcMusicStore. The
AccountController class should use the MvcMusicStore.Controllers namespace, and the AccountModels class
should use the MvcMusicStore.Models namespace.

Note: If you are copying these files from an empty website rather than the Assets zip, you will need to update the
namespaces to match MvcMusicStore.Controllers and MvcMusicStore.Models.

The updated solution should look like the following:

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 81

Solution Explorer * Q1 X

> e
:‘:‘§ MvcMusicStore -
> [=d] Properties
» [+a] References
3 App_Data
4 [Content
> [J Images
» [themes
Al Site.css
4 | Controllers
[] AccountController.cs]
] HomeController.cs
] StoreController.cs
] StoreManagerController.cs
4 | Models
[Eﬁ AccountModels.cs
] Albumn.cs
] Artist.cs
] Genre.cs
] MusicStoreEntities.cs
#] SampleData.cs
> [Scripts
4 | Views
4 | [Account
‘f_ﬂ ChangePassword.cshtml

m

‘f_ﬂ ChangePasswordSuccess.cshtml
55 LogOn.cshtml

“i) Register.cshtml T
» | Home

» [Shared

» [Store

> [StoreManager

Y Uiz Chart cchieal

c@ Solution Explorer E Database Explorer

Adding an Administrative User with the ASP.NET Configuration site
Before we require Authorization in our website, we’ll need to create a user with access. The easiest way to
create a user is to use the built-in ASP.NET Configuration website.

Launch the ASP.NET Configuration website by clicking following the icon in the Solution Explorer.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 82

Solution Explorer

IEali=kss ()
G Solution "MyvcMusicStore' (1 project) -
4 @ MvcMusicStore

[» [=d Properties

i [+3] References

I L_aApp_Data

[ﬁ Content

m

This launches a configuration website. Click on the Security tab on the home screen, then click the “Enable
roles” link in the center of the screen.

[™
g ASP.MNet Web Application Administration - Windows Internet Explorer [= | B £ J
@ |g| http://localhost:28525/asp.netwebadminfiles/security v| bt | "f| X | |E) Bing L v|

i Favorites | (@ ASP.Net Web Application Administration |_| B~ v [d#h v Pagev Safetyv Toolsv @+

ASP Web Site Administration Tool How do I use this tool?

Home Security ” Application H Provider l

You can use the Web Site Administration Tool to manage all the security settings for
your application. You can set up users and passwords (authentication), create roles
(groups of users), and create permissions (rules for controlling access to parts of your
application).

By default, user information is stored in a Microsoft SQL Server Express database in the
Data folder of your Web site. If you want to store user information in a different
database, use the Provider tab to select a different prowvider.

m

Use the security Setup Wizard to configure security step by step.

Click the links in the table to manage the settings for your application.

C N TS T

Existing users: D Create access rules

Create user Enable roles Manage access rules
Manage users -

Select authentication type

eﬂ. Local intranet | Protected Mode: Off Vv HI100% -

Click the “Create or Manage roles” link.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 83

e ™y
& ASP.Net Web Application Administration - Windows Internet Explorer EIEM

@ Q ® |ﬂ http://localhost:48371 /asp.netwebadminfiles/security/security.aspx - | 3 | X | |lE) Bing L '|

[

ASP Web Site Administration Tool

ww g ASP.MNet Web Application Administration

You can use the Web Site Administration Tool to manage all the security settings for
your application. You can set up users and passwords (authentication), create roles
(groups of users), and create permissions (rules for controlling access to parts of your
application]).

By default, user information is stored in a Microsoft SQL Server Express database in the
Data folder of your Web site. If you want to store user information in a different
database, use the Provider tab to select a different provider.

Use the security Setup Wizard to configure security step by step.

Click the links in the table to manage the settings for your application.

R T

Existing users: Existing roles: Create access rules
Create user Disable Roles Manage access rules

Manage users ICFE!EItE or Manage rolesl

Select authentication type

| €& Local intranet | Protected Mode: OFf 4 v H100% -

Enter “Administrator” as the role name and press the Add Role button.

i ™
(& ASP.Net Web Application Administration - Windows Internet Explorer E@u
@ Q - |ﬂ http://localhost:48871 /asp.netwebadminfiles/security/roles/manageAllRoles.aspx - | +5 | X | |lE) Bing L '|
iﬁ‘ @ ASP.Met Web Application Administration

ASP Web Site Administration Tool How do I use this tool? @

Home | Security application Provider

You can optionally add roles, or groups, that enable you to allow or deny groups of
users access to specific folders in your Web site. For example, you might create roles
such as "managers," "sales," or "members," each with different access to specific
folders.

Create New Role

New role name: Administrator

|Done ﬁi Local intranet | Protected Mode: Off Sy v H100%

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 84

Click the Back button, then click on the Create user link on the left side.

g ASP.MNet Web Application Administration - Windows Internet Explorer l = | & P9 J
@O ® |g, http://localhost:28525/asp.netwebadminfiles/security ~ | b | +4 | X | |E) Bing P v|
o . —— 3
T Favorites | @ ASP.Net Web Application Administration | | & - v [@ v Page~ Safety~ Took~ i@~
ASP Web Site Administration Tool How do I use this tool? @ F

Home Security H Application ” Provider]

You can use the Web Site Administration Tool to manage all the security settings for
your application. You can set up users and passwords (authentication), create roles
{groups of users), and create permissions (rules for controlling access to parts of your
application).

By default, user information is stored in a Microsoft SQL Server Express database in the
Data folder of your Web site. If you want to store user information in a different
database, use the Provider tab to select a different provider.

m

Use the security Setup Wizard to configure security step by step.

Click the links in the table to manage the settings for your application.

S

Existing roles: 1 Create access rules
Disable Roles Manage access rules
Create or Manage roles

Select authentication type

| e'y Local intranet | Protected Mode: Off dhow H100% -

L A

Fill in the user information fields on the left using the following information:

User Name Administrator

Password password123!

Confirm Password password123!

E-mail (any e-mail address will work)
Security Question (whatever you like)

Security Answer (whatever you like)

Note: You can of course use any password you’d like. The above password is shown as an example, and is
assumed in the support forums on CodePlex. The default password security settings require a password that is 7
characters long and contains one non-alphanumeric character.

Select the Administrator role for this user, and click the Create User button.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 85

=3 =

7

-
g ASP.MNet Web Application Administration - Windows Internet Explorer

6@ ® |ﬂ http://localhost:28525/asp.netwebadminfiles/security ~ | b | ‘1-| X | |t'E) Bing
5 Favorites | (@ ASP.Net Web Application Administration - v [@ v Pagew Safety~ Tooks~ @~

How do I use this tool?

Web Site Administration Tool

m—

Add a user by entering the user's ID, password, and e-mail address on this page.

o

Select roles for this user:

Sign Up for Your New Account
User Name: Administratar

Administrator

Password:
Confirm Password:
E-mail:

Security Question:

test@test.com

What kind of bear is best?

m

Security Answer: That's a ridiculous guestio

[¥] Active User

I "

ﬁi Local intranet | Protected Mode: Off -

Done

At this point, you should see a message indicating that the user was created successfully.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 86

e ™y
(& ASP.Net Web Application Administration - Windows Internet Explarer E@g

@ Q - |g| http://localhost:48871/asp.netwebadminfiles/security/users/addUser.aspx hd | ‘f| X | |tE) L "|

W | @ ASP.Net Web Application Administration | |

-

ASP Web Site Administration Tool How do L use this too? (?)

Application Provider

e

Select roles for this user:
Complete

Your account has been successfully created. [¥] Administrator

_'

|Done eﬂ. Local intranet | Protected Mode: Off 4y v ®100% -
n

You can now close the browser window.

Role-based Authorization
Now we can restrict access to the StoreManagerController using the [Authorize] attribute, specifying that the
user must be in the Administrator role to access any controller action in the class.

[Authorize(Roles = "Administrator™)]
public class StoreManagerController : Controller
{

// Controller code here

}

Note: The [Authorize] attribute can be placed on specific action methods as well as at the Controller class level.

Now browsing to /StoreManager brings up a Log On dialog:

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 87

v =

e '@' B http://localhost:26641/Account/LogOn?Returr v Em

ASP.NET MVC MUSIC STORE

Log On

Please enter your usemame and password. Register if you don't have an account.

— Account Information

User name

|
Password

—
Remember me?

After logging on with our new Administrator account, we’'re able to go to the Album Edit screen as before.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 88

8. Shopping Cart with Ajax Updates

We’'ll allow users to place albums in their cart without registering, but they’ll need to register as guests to
complete checkout. The shopping and checkout process will be separated into two controllers: a ShoppingCart
Controller which allows anonymously adding items to a cart, and a Checkout Controller which handles the
checkout process. We'll start with the Shopping Cart in this section, then build the Checkout process in the
following section.

Adding the Cart, Order, and OrderDetail model classes
Our Shopping Cart and Checkout processes will make use of some new classes. Right-click the Models folder and
add a Cart class (Cart.cs) with the following code.

using System.ComponentModel.DataAnnotations;

namespace MvcMusicStore.Models

{
public class Cart
{
[Key]
public int RecordId { get; set; }
public string CartId { get; set; }
public int AlbumId { get; set; }
public int Count { get; set; }
public System.DateTime DateCreated { get; set; }
public virtual Album Album { get; set; }
}
}

This class is pretty similar to others we’ve used so far, with the exception of the [Key] attribute for the Recordld
property. Our Cart items will have a string identifier named CartID to allow anonymous shopping, but the table
includes an integer primary key named Recordld. By convention, Entity Framework Code-First expects that the
primary key for a table named Cart will be either Cartld or ID, but we can easily override that via annotations or
code if we want. This is an example of how we can use the simple conventions in Entity Framework Code-First
when they suit us, but we’re not constrained by them when they don’t.

Next, add an Order class (Order.cs) with the following code.
using System.Collections.Generic;

namespace MvcMusicStore.Models

{

public partial class Order

{
public int OrderId { get; set; }
public string Username { get; set; }
public string FirstName { get; set; }
public string LastName { get; set; }
public string Address { get; set; }
public string City { get; set; }

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 89

public string State { get; set; }
public string PostalCode { get; set; }
public string Country { get; set; }
public string Phone { get; set; }
public string Email { get; set; }
public decimal Total { get; set; }
public System.DateTime OrderDate { get; set; }

public List<OrderDetail> OrderDetails { get; set; }

This class tracks summary and delivery information for an order. It won’t compile yet, because it has an
OrderDetails navigation property which depends on a class we haven’t created yet. Let’s fix that now by adding
a class named OrderDetail.cs, adding the following code.

namespace MvcMusicStore.Models

{

public class OrderDetail

{
public int OrderDetailld { get; set; }

public int OrderId { get; set; }
public int AlbumId { get; set; }
public int Quantity { get; set; }
public decimal UnitPrice { get; set; }

public virtual Album Album { get; set; }
public virtual Order Order { get; set; }

We’'ll make one last update to our MusicStoreEntities class to include DbSets which expose those new Model
classes, also including a DbSet<Artist>. The updated MusicStoreEntities class appears as below.

using System.Data.Entity;

namespace MvcMusicStore.Models

{
public class MusicStoreEntities : DbContext
{
public DbSet<Album> Albums { get; set; }
public DbSet<Genre> Genres { get; set; }
public DbSet<Artist> Artists { get; set; }
public DbSet<Cart> Carts { get; set; }
public DbSet<Order> Orders { get; set; }
public DbSet<OrderDetail> OrderDetails { get; set; }
}
}

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 90

Managing the Shopping Cart business logic

Next, we’ll create the ShoppingCart class in the Models folder. The ShoppingCart model handles data access to
the Cart table. Additionally, it will handle the business logic to for adding and removing items from the shopping
cart.

Since we don’t want to require users to sign up for an account just to add items to their shopping cart, we will
assign users a temporary unique identifier (using a GUID, or globally unique identifier) when they access the
shopping cart. We'll store this ID using the ASP.NET Session class.

Note: The ASP.NET Session is a convenient place to store user-specific information which will expire after they
leave the site. While misuse of session state can have performance implications on larger sites, our light use will
work well for demonstration purposes.

The ShoppingCart class exposes the following methods:

AddToCart takes an Album as a parameter and adds it to the user’s cart. Since the Cart table tracks quantity for
each album, it includes logic to create a new row if needed or just increment the quantity if the user has already
ordered one copy of the album.

RemoveFromCart takes an Album ID and removes it from the user’s cart. If the user only had one copy of the
album in their cart, the row is removed.

EmptyCart removes all items from a user’s shopping cart.

GetCartltems retrieves a list of Cartltems for display or processing.

GetCount retrieves a the total number of albums a user has in their shopping cart.
GetTotal calculates the total cost of all items in the cart.

CreateOrder converts the shopping cart to an order during the checkout phase.

GetCart is a static method which allows our controllers to obtain a cart object. It uses the GetCartld method to
handle reading the Cartld from the user’s session. The GetCartld method requires the HttpContextBase so that it
can read the user’s Cartld from user’s session.

Here's the complete ShoppingCart class:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.Mvc;

namespace MvcMusicStore.Models

{
public partial class ShoppingCart

{

MusicStoreEntities storeDB = new MusicStoreEntities();

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 91

string ShoppingCartId { get; set; }
public const string CartSessionKey = "CartId";

public static ShoppingCart GetCart(HttpContextBase context)
{

var cart = new ShoppingCart();

cart.ShoppingCartId = cart.GetCartId(context);

return cart;

}

// Helper method to simplify shopping cart calls
public static ShoppingCart GetCart(Controller controller)

{
return GetCart(controller.HttpContext);

}
public void AddToCart(Album album)
{
// Get the matching cart and album instances
var cartItem = storeDB.Carts.SingleOrDefault(
c => c.CartId == ShoppingCartId
&& c.AlbumId == album.AlbumId);
if (cartItem == null)
{
// Create a new cart item if no cart item exists
cartItem = new Cart
{
AlbumId = album.AlbumId,
CartId = ShoppingCartlId,
Count =1,
DateCreated = DateTime.Now
}s
storeDB.Carts.Add(cartItem);
}
else
{
// If the item does exist in the cart, then add one to the quantity
cartItem.Count++;
}
// Save changes
storeDB.SaveChanges();
¥

public int RemoveFromCart(int id)
{
// Get the cart
var cartItem = storeDB.Carts.Single(
cart => cart.CartId == ShoppingCartId
&& cart.RecordId == id);

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 92

int itemCount = 0;

if (cartItem != null)

{
if (cartItem.Count > 1)
{
cartItem.Count--;
itemCount = cartItem.Count;
}
else
{
storeDB.Carts.Remove(cartItem);
}
// Save changes
storeDB.SaveChanges();
}
return itemCount;
}
public void EmptyCart()
{
var cartItems = storeDB.Carts.Where(cart => cart.CartId == ShoppingCartId);
foreach (var cartItem in cartItems)
{
storeDB.Carts.Remove(cartItem);
}
// Save changes
storeDB.SaveChanges();
}
public List<Cart> GetCartItems()
{
return storeDB.Carts.Where(cart => cart.Cartld == ShoppingCartId).ToList();
}
public int GetCount()
{
// Get the count of each item in the cart and sum them up
int? count = (from cartItems in storeDB.Carts
where cartItems.CartId == ShoppingCartId
select (int?)cartItems.Count).Sum();
// Return @ if all entries are null
return count ?? 0;
}
public decimal GetTotal()
{

// Multiply album price by count of that album to get
// the current price for each of those albums in the cart
// sum all album price totals to get the cart total

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 93

decimal? total = (from cartItems in storeDB.Carts

where cartItems.CartId == ShoppingCartId

select (int?)cartItems.Count * cartItems.Album.Price).Sum();
return total ?? decimal.Zero;

}

public int CreateOrder(Order order)

{

decimal orderTotal = 0;
var cartlItems = GetCartItems();

// Iterate over the items in the cart, adding the order details for each
foreach (var item in cartItems)

{

var orderDetail = new OrderDetail
{
AlbumId item.Albumld,
OrderId = order.Orderld,
UnitPrice = item.Album.Price,
Quantity = item.Count

}s

// Set the order total of the shopping cart
orderTotal += (item.Count * item.Album.Price);

storeDB.OrderDetails.Add(orderDetail);

}

// Set the order's total to the orderTotal count
order.Total = orderTotal;

// Save the order
storeDB.SaveChanges();

// Empty the shopping cart
EmptyCart();

// Return the OrderId as the confirmation number
return order.Orderld;

}

// We're using HttpContextBase to allow access to cookies.
public string GetCartId(HttpContextBase context)

{

if (context.Session[CartSessionKey] == null)

{
if (!string.IsNullOrWhiteSpace(context.User.Identity.Name))
{

context.Session[CartSessionKey] = context.User.Identity.Name;

}
else
{

// Generate a new random GUID using System.Guid class

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 94

Guid tempCartId = Guid.NewGuid();

// Send tempCartId back to client as a cookie
context.Session[CartSessionKey] = tempCartId.ToString();

}

return context.Session[CartSessionKey].ToString();

}

// When a user has logged in, migrate their shopping cart to
// be associated with their username
public void MigrateCart(string userName)

{
var shoppingCart = storeDB.Carts.Where(c => c.CartId == ShoppingCartld);
foreach (Cart item in shoppingCart)
{
item.CartId = userName;
}
storeDB.SaveChanges();
}
}
}
ViewModels

Our Shopping Cart Controller will need to communicate some complex information to its views which doesn’t
map cleanly to our Model objects. We don’t want to modify our Models to suit our views; Model classes should
represent our domain, not the user interface. One solution would be to pass the information to our Views using
the ViewBag class, as we did with the Store Manager dropdown information, but passing a lot of information via
ViewBag gets hard to manage.

A solution to this is to use the ViewModel pattern. When using this pattern we create strongly-typed classes that
are optimized for our specific view scenarios, and which expose properties for the dynamic values/content
needed by our view templates. Our controller classes can then populate and pass these view-optimized classes
to our view template to use. This enables type-safety, compile-time checking, and editor IntelliSense within
view templates.

We'll create two View Models for use in our Shopping Cart controller: the ShoppingCartViewModel will hold the
contents of the user’s shopping cart, and the ShoppingCartRemoveViewModel will be used to display
confirmation information when a user removes something from their cart.

Let’s create a new ViewModels folder in the root of our project to keep things organized. Right-click the project,
select Add / New Folder.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 95

Solution Explorer * 01X

2l aEle

T ua T

‘ore

Build !
Rebuild c
Clean
Build Deployment Package
4 Publish.. I°
5% Package/Publish Settings

Convert to Web Application

Add r

Add Reference...

Area...

i Mew tem... Ctrl+Shift+A4 config
i Existing Item... Shift+ Alt+A sitlznizale Bl ig
4 Mew Folder Add Deployable Dependencies...

Add ASP.NET Folder » Add Library Package Reference...

Use IS Express...
Debug r

Clazs...

Name the folder ViewModels.

Solution Explorer * Il

2| »El e
5:% MvcMusicStore
> [=d| Properties
» [+3] References

> [App_Data
» [Content
» [Controllers
> [Helpers
» [Models
Sl Viewviooe] |
> [l Scripts
s g Views
> 4] Global.asax
s packages.config

s[5 Web.config

Next, add the ShoppingCartViewModel class in the ViewModels folder. It has two properties: a list of Cart items,
and a decimal value to hold the total price for all items in the cart.

using System.Collections.Generic;
using MvcMusicStore.Models;

namespace MvcMusicStore.ViewModels

{
public class ShoppingCartViewModel

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 96

public List<Cart> CartItems { get; set; }
public decimal CartTotal { get; set; }

}

Now add the ShoppingCartRemoveViewModel to the ViewModels folder, with the following four properties.

namespace MvcMusicStore.ViewModels

{
public class ShoppingCartRemoveViewModel
{
public string Message { get; set; }
public decimal CartTotal { get; set; }
public int CartCount { get; set; }
public int ItemCount { get; set; }
public int DeleteId { get; set; }
}
}

The Shopping Cart Controller

The Shopping Cart controller has three main purposes: adding items to a cart, removing items from the cart, and
viewing items in the cart. It will make use of the three classes we just created: ShoppingCartViewModel,
ShoppingCartRemoveViewModel, and ShoppingCart. As in the StoreController and StoreManagerController,
we’ll add a field to hold an instance of MusicStoreEntities.

Add a new Shopping Cart controller to the project using the Empty controller template.

Add Controller o
Contraller name:
BEing ontroller

Scaffolding options

Temnplate:

’Er‘npt:,f controller -

Mone

Add || cancel

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 97

Here’s the complete ShoppingCart Controller. The Index and Add Controller actions should look very familiar.
The Remove and CartSummary controller actions handle two special cases, which we’ll discuss in the following
section.

using System.Lingq;

using System.Web.Mvc;

using MvcMusicStore.Models;
using MvcMusicStore.ViewModels;

namespace MvcMusicStore.Controllers

{
public class ShoppingCartController : Controller

{

MusicStoreEntities storeDB = new MusicStoreEntities();

//
// GET: /ShoppingCart/

public ActionResult Index()

{
var cart = ShoppingCart.GetCart(this.HttpContext);
// Set up our ViewModel
var viewModel = new ShoppingCartViewModel
{
CartItems = cart.GetCartItems(),
CartTotal = cart.GetTotal()
¥
// Return the view
return View(viewModel);
}
//

// GET: /Store/AddToCart/5

public ActionResult AddToCart(int id)

{
// Retrieve the album from the database
var addedAlbum = storeDB.Albums
.Single(album => album.AlbumId == id);
// Add it to the shopping cart
var cart = ShoppingCart.GetCart(this.HttpContext);
cart.AddToCart(addedAlbum);
// Go back to the main store page for more shopping
return RedirectToAction("Index");
}
//

// AJAX: /ShoppingCart/RemoveFromCart/5

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 98

[HttpPost]
public ActionResult RemoveFromCart(int id)

{
// Remove the item from the cart
var cart = ShoppingCart.GetCart(this.HttpContext);
// Get the name of the album to display confirmation
string albumName = storeDB.Carts
.Single(item => item.RecordId == id).Album.Title;
// Remove from cart
int itemCount = cart.RemoveFromCart(id);
// Display the confirmation message
var results = new ShoppingCartRemoveViewModel
{
Message = Server.HtmlEncode(albumName) +
" has been removed from your shopping cart."”,
CartTotal = cart.GetTotal(),
CartCount = cart.GetCount(),
ItemCount = itemCount,
DeleteId = id
¥
return Json(results);
}
//
// GET: /ShoppingCart/CartSummary
[ChildActionOnly]
public ActionResult CartSummary()
{

var cart = ShoppingCart.GetCart(this.HttpContext);
ViewData["CartCount”] = cart.GetCount();

return PartialView("CartSummary");

}

Ajax Updates with jQuery

We'll next create a Shopping Cart Index page that is strongly typed to the ShoppingCartViewModel and uses the
List View template using the same method as before.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 99

e N ==

View name:
Index

View engine:

| Razor (CSHTML) -

Create a strongly-typed view

Model class:
ShoppingCartViewModel (MvcMusicStore ViewModels) -

Scaffeld temnplate:
’List v] Reference script libraries

[] Create as a partial view

Use a layout or master page:

]

(Leave emnpty if it is set in a Razor _viewstart file)

fMainContent

| Add || Cancel

However, instead of using an Html.ActionLink to remove items from the cart, we’ll use jQuery to “wire up” the
click event for all links in this view which have the HTML class Removelink. Rather than posting the form, this
click event handler will just make an AJAX callback to our RemoveFromCart controller action. The
RemoveFromCart returns a JSON serialized result, which is automatically passed to the JavaScript method
specified in our AjaxOptions OnSuccess parameter — handleUpdate in this case. The handleUpdate Javascript
function parses the JSON results and performs four quick updates to the page using jQuery:

Removes the deleted album from the list
Updates the cart count in the header
Displays an update message to the user

i s

Updates the cart total price

Since the remove scenario is being handled by an Ajax callback within the Index view, we don’t need an
additional view for RemoveFromCart action. Here is the complete code for the /ShoppingCart/Index view:

@model MvcMusicStore.ViewModels.ShoppingCartViewModel

@{
ViewBag.Title = "Shopping Cart";

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 100

}
<script src="/Scripts/jquery-1.4.4.min.js" type="text/javascript"></script>
<script type="text/javascript">
$(function () {
// Document.ready -> link up remove event handler
$(".RemoveLink").click(function () {
// Get the id from the link
var recordToDelete = $(this).attr("data-id");

if (recordToDelete != '") {

// Perform the ajax post

$.post("/ShoppingCart/RemoveFromCart”, { "id": recordToDelete },

function (data) {
// Successful requests get here
// Update the page elements
if (data.ItemCount == 0) {
$('#row-' + data.DeleteId).fadeOut('slow');
} else {

$('#item-count-' + data.Deleteld).text(data.ItemCount);

}

$('#cart-total').text(data.CartTotal);
$('#update-message').text(data.Message);

$('#cart-status').text('Cart (' + data.CartCount + ')');

)
}
})s

})s

function handleUpdate() {
// Load and deserialize the returned JSON data
var json = context.get _data();
var data = Sys.Serialization.JavaScriptSerializer.deserialize(json);

// Update the page elements
if (data.ItemCount == @) {
$('#row-' + data.Deleteld).fadeOut('slow');
} else {
$('#item-count-' + data.Deleteld).text(data.ItemCount);

}

$('#cart-total').text(data.CartTotal);
$('#update-message').text(data.Message);
$('#cart-status').text('Cart (' + data.CartCount + ")');
}
</script>
<h3>
Review your cart:
</h3>
<p class="button">
@Html.ActionLink("Checkout >>", "AddressAndPayment", "Checkout")
</p>

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 101

<div id="update-message">

</div>
<table>
<tr>
<th>
Album Name
</th>
<th>
Price (each)
</th>
<th>
Quantity
</th>
<th></th>
</tr>
@foreach (var item in Model.CartItems)
{

<tr id="row-@item.RecordId">
<td>
@Html.ActionLink(item.Album.Title, "Details", "Store", new { id =
item.AlbumId }, null)
</td>
<td>
@item.Album.Price
</td>
<td id="item-count-@item.RecordId">
@item.Count
</td>
<td>
Remove from
cart
</td>
</tr>
}
<tr>
<td>
Total
</td>
<td>
</td>
<td>
</td>
<td id="cart-total">
@Vodel.CartTotal
</td>
</tr>
</table>

In order to test this out, we need to be able to add items to our shopping cart. We’ll update our Store Details
view to include an “Add to cart” button. While we’re at it, we can include some of the Album additional
information which we’ve added since we last updated this view: Genre, Artist, Price, and Album Art. The
updated Store Details view code appears as shown below.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 102

@model MvcMusicStore.Models.Album

@{
¥

<h2>@Vodel.Title</h2>

ViewBag.Title = "Album - " + Model.Title;

<p>

</p>

<div id="album-details">
<p>
Genre:
@Model.Genre.Name
</p>
<p>
Artist:
@Model.Artist.Name
</p>
<p>
Price:
@String.Format("{@:F}", Model.Price)
</p>
<p class="button">
@Html.ActionLink("Add to cart", "AddToCart",
"ShoppingCart”, new { id = Model.AlbumId }, "")
</p>
</div>

Now we can click through the store and test adding and removing Albums to and from our shopping cart. Run
the application and browse to the Store Index.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 103

-
& Store Genres - Windows Internet Explorer

@ '\../’I ® |g http://localhost: 26641 /5tore/

-4 x] [l 8ing

w | (€ Store Genres

ot

ASP.NET MVC MUSIC STORE

Home Store

Browse Genres

Select from 10 genres:

Rock
Jazz
Metal
Alternative
Disco
Blues
Latin
Reggae
Pop
Classical

'?l', Lecal intranet | Protected Mode: Off

f v ®100%

Next, click on a Genre to view a list of albums.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com

Tutorial under Creative Commons Attribution 3.0 License
Page 104

" h'
(& Browse - Windows Internet Explorer I. = | E g

@ u - |@, http://localhost. 26641 /5tore/Browse?genre=Disco | +4 | A | |b Bing Fe -

{E’ | @ Browse | |

* Home Store

ASP.NET MVC MUSIC STORE

Browsing Genre: Disco

m Le Freak
s MacArthur Park Suite
= Ring My Bell

Done ﬂ. Local intranet | Protected Mode: Off dy v WI00% v

Clicking on an Album title now shows our updated Album Details view, including the “Add to cart” button.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 105

0 Ty
& Album - Ring My Bell - Windows Internet Explarer Elﬂlﬂ

& () = [E] nttpi//tocalhost26541/Store/Details/562 ~| 44| x | | 5ing o~

w |@A|bum-ﬁ‘.ing My Bell | |

* Home Store

ASP.NET MVC MUSIC STORE

Ring My Bell

Sample
T
£y
Ly

Genre: Disco
Artist: Anita Ward
Price: 8.99

Add to cart

'?l', Local intranet | Protected Mode: Off 45 v 0% -

Clicking the “Add to cart” button shows our Shopping Cart Index view with the shopping cart summary list.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 106

= | B | |

@LJ | @] http://localhost 26641 /ShoppingCart - 4] x| [8ing £ -

& Shopping Cart - Windows Internet Explorer

"i,':? | {& Shopping Cart | |

* Home Store

ASP.NET MVC MUSIC STORE

Review your cart:

Checkout >>

Ring My Bell 8.99 1 Remove from cart
Total §.99
Done ?ﬂ. Local intranet | Protected Mode: Off 45 v 0% -
A

e

After loading up your shopping cart, you can click on the Remove from cart link to see the Ajax update to your

shopping cart.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 107

e At
& Shopping Cart - Windows Internet Explorer E@g

@LJ | €] http://localhost:26641/ShoppingCart - 4] x| [8ing £ -

"i,':? | & Shopping Cart | |

* Home Store

ASP.NET MVC MUSIC STORE

Review your cart:

Checkout >>

The Worst Of Men At Work has been removed from iour shoiiinc cart.

Ring My Bell 8.99 1 Remove from cart
The Best Of Billy Cobham 8.99 1 Remove from cart
Total 17.98
?ﬂ. Local intranet | Protected Mode: Off #5 v HI10% -
A

e

We've built out a working shopping cart which allows unregistered users to add items to their cart. In the
following section, we’ll allow them to register and complete the checkout process.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 108

9. Registration and Checkout

In this section, we will be creating a CheckoutController which will collect the shopper’s address and payment
information. We will require users to register with our site prior to checking out, so this controller will require
authorization.

Users will navigate to the checkout process from their shopping cart by clicking the “Checkout” button.

- N
{& Shopping Cart - Windows Internet Explorer E@g

@'\._:f" hd ‘EI http://localhost:26641/ShoppingCart h | "'| A | |b Bing » vl

i.?_| & Shopping Cart ‘ |

* Home Store

ASP.NET MVC MUSIC STORE

Review your cart:

—— /

Ring My Bell 8.99 1 Remove from cart
The Best Of Billy Cobham 8.99 2 Remove from cart
The Essential Miles Davis [Disc 1] 8.99 1 Remove from cart
Total 35.96
€& Local intranet | Protected Mode: Off 3 v ®100% v
.9 A

If the user is not logged in, they will be prompted to.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 109

=)

-
@ Log On - Windows Internet Explorer
@U - |£. http://localhost: 26641 /Account/LogOn?ReturnUrl=%:2fCheckout%a2fAddress) = | +4 | A | |b Eing P -
w | & Log On | |
* Home @ Store
ASP.NET MVC MUSIC STORE :
Log On
Please enter your username and password. Register if you don't have an account.
— Account Information
User name
Password
I” Remember me?
Done G‘I‘., Local intranet | Protected Mode: Off 3o H100% -

Upon successful login, the user is then shown the Address and Payment view.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 110

' ™y
€ Address and Payment - Windows Internet Explorer E@g

@U - |£, http://localhost: 26641/ Checkout/AddressAndPayment hd | 43 | X | |b Bing P -

W | (€ Address and Payment | |

* Home Store

ASP.NET MVC MUSIC STORE

Address and Payment

— Shipping Information

First Name

Last Name

| |
Address

| |
Icmr |

State

Postal Code

Country

Phone

Email Address

— Payment

We're running a promotion: all music is free with the promo code "FREE"

Promo Code

Submit Order

Done el'.. Local intranet | Protected Mode: Off fy v HI00% -

Once they have filled the form and submitted the order, they will be shown the order confirmation screen.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 111

i A
€& Checkout Complete - Windows Internet Explorer E@lﬂ

& () » [&] httpi//tocalhost 26641/ Checkoutst +] é4] X | [l 8ing o ~|

W . €& Checkout Complete

* Home Store

ASP.NET MVC MUSIC STORE

Checkout Complete

Thanks for your order! Your order number is: 475

How about shopping for some more music in our H

?IL Local intranet | Protected Mode: Off v;] ~ HI100% -

L A

Attempting to view either a non-existent order or an order that doesn’t belong to you will show the Error view.

i R
€& Error - Windows Internet Explorer E@ﬂ

@) L |g, http://localhost: 26641/ Checkout/Complete/473 - | 4 | A | |b Bing Fe -
‘f:(‘ E Error
* Home | Store
ASP.NET MVC MUSIC STORE :
Error
We're sorry, we've hit an unexpected error. if you'd like to go back and try
that again.
Done ?‘l.. Local intranet | Protected Mode: Off wf;-] - F100% -
e A

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 112

Migrating the Shopping Cart

While the shopping process is anonymous, when the user clicks on the Checkout button, they will be required to
register and login. Users will expect that we will maintain their shopping cart information between visits, so we
will need to associate the shopping cart information with a user when they complete registration or login.

This is actually very simple to do, as our ShoppingCart class already has a method which will associate all the
items in the current cart with a username. We will just need to call this method when a user completes
registration or login.

Open the AccountController class that we added when we were setting up Membership and Authorization. Add
a using statement referencing MvcMusicStore.Models, then add the following MigrateShoppingCart method:

private void MigrateShoppingCart(string UserName)

{
// Associate shopping cart items with logged-in user
var cart = ShoppingCart.GetCart(this.HttpContext);
cart.MigrateCart(UserName);
Session[ShoppingCart.CartSessionKey] = UserName;

}

Next, modify the LogOn post action to call MigrateShoppingCart after the user has been validated, as shown
below:

//
// POST: /Account/LogOn

[HttpPost]
public ActionResult LogOn(LogOnModel model, string returnuUrl)
{

if (ModelState.IsValid)

{

if (Membership.ValidateUser(model.UserName, model.Password))

{
MigrateShoppingCart(model.UserName);

FormsAuthentication.SetAuthCookie(model.UserName, model.RememberMe);
if (Url.IsLocalUrl(returnUrl) && returnUrl.Length > 1 &&
returnUrl.StartsWith("/")
&& !returnUrl.StartsWith("//") && !returnUrl.StartsWith("/\\"))

{
return Redirect(returnurl);
}
else
{
return RedirectToAction("Index", "Home");
}
}
else
{

ModelState.AddModelError("", "The user name or password provided is
incorrect.");

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 113

}

// If we got this far, something failed, redisplay form
return View(model);

Make the same change to the Register post action, immediately after the user account is successfully created:

//
// POST: /Account/Register

[HttpPost]
public ActionResult Register(RegisterModel model)

{
if (ModelState.IsValid)

{
// Attempt to register the user
MembershipCreateStatus createStatus;
Membership.CreateUser(model.UserName, model.Password, model.Email,
"question"”, "answer", true, null, out createStatus);

if (createStatus == MembershipCreateStatus.Success)

{
MigrateShoppingCart(model.UserName);

FormsAuthentication.SetAuthCookie(model.UserName, false /*
createPersistentCookie */);
return RedirectToAction("Index", "Home");

}

else

{
}

ModelState.AddModelError("", ErrorCodeToString(createStatus));

}

// If we got this far, something failed, redisplay form
return View(model);

That’s it - now an anonymous shopping cart will be automatically transferred to a user account upon successful
registration or login.

Creating the CheckoutController
Right-click on the Controllers folder and add a new Controller to the project named CheckoutController using
the Empty controller template.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 114

Add Controller [

Controller name:

[G ontroller

Scaffolding options

Template:

[Em pty contreller -

Mone

Add H —

First, add the Authorize attribute above the Controller class declaration to require users to register before
checkout:

namespace MvcMusicStore.Controllers

{
[Authorize]

public class CheckoutController : Controller

Note: This is similar to the change we previously made to the StoreManagerController, but in that case the
Authorize attribute required that the user be in an Administrator role. In the Checkout Controller, we’re requiring
the user be logged in but aren’t requiring that they be administrators.

For the sake of simplicity, we won’t be dealing with payment information in this tutorial. Instead, we are
allowing users to check out using a promotional code. We will store this promotional code using a constant
named PromoCode.

As in the StoreController, we’ll declare a field to hold an instance of the MusicStoreEntities class, named
storeDB. In order to make use of the MusicStoreEntities class, we will need to add a using statement for the
MvcMusicStore.Models namespace. The top of our Checkout controller appears below.

using System;

using System.Ling;

using System.Web.Mvc;

using MvcMusicStore.Models;

namespace MvcMusicStore.Controllers

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 115

[Authorize]
public class CheckoutController : Controller

{

MusicStoreEntities storeDB = new MusicStoreEntities();
const string PromoCode = "FREE";

The CheckoutController will have the following controller actions:
AddressAndPayment (GET method) will display a form to allow the user to enter their information.
AddressAndPayment (POST method) will validate the input and process the order.

Complete will be shown after a user has successfully finished the checkout process. This view will include the
user’s order number, as confirmation.

First, let’s rename the Index controller action (which was generated when we created the controller) to
AddressAndPayment. This controller action just displays the checkout form, so it doesn’t require any model
information.

//
// GET: /Checkout/AddressAndPayment

public ActionResult AddressAndPayment()
{

}

return View();

Our AddressAndPayment POST method will follow the same pattern we used in the StoreManagerController: it
will try to accept the form submission and complete the order, and will re-display the form if it fails.

After validating the form input meets our validation requirements for an Order, we will check the PromoCode
form value directly. Assuming everything is correct, we will save the updated information with the order, tell the
ShoppingCart object to complete the order process, and redirect to the Complete action.

//
// POST: /Checkout/AddressAndPayment

[HttpPost]
public ActionResult AddressAndPayment(FormCollection values)

{
var order = new Order();
TryUpdateModel (order);

try
{
if (string.Equals(values["PromoCode"], PromoCode,
StringComparison.OrdinalIgnoreCase) == false)
{
return View(order);
}

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 116

else

order.Username = User.Identity.Name;
order.OrderDate = DateTime.Now;

//Save Order
storeDB.Orders.Add(order);
storeDB.SaveChanges();

//Process the order
var cart = ShoppingCart.GetCart(this.HttpContext);
cart.CreateOrder(order);

return RedirectToAction("Complete",
new { id = order.OrderId });

}

catch

{

//Invalid - redisplay with errors
return View(order);

}

Upon successful completion of the checkout process, users will be redirected to the Complete controller action.
This action will perform a simple check to validate that the order does indeed belong to the logged-in user
before showing the order number as a confirmation.

//
// GET: /Checkout/Complete

public ActionResult Complete(int id)
{

// Validate customer owns this order
bool isValid = storeDB.Orders.Any(
0 => 0.0rderId == id &&
o.Username == User.Identity.Name);

if (isvalid)
{

}

else

{
}

return View(id);

return View("Error");

Note: The Error view was automatically created for us in the /Views/Shared folder when we began the project.

The complete CheckoutController code is as follows:

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 117

using System;

using System.Lingq;

using System.Web.Mvc;

using MvcMusicStore.Models;

namespace MvcMusicStore.Controllers

{
[Authorize]
public class CheckoutController : Controller
{
MusicStoreEntities storeDB = new MusicStoreEntities();
const string PromoCode = "FREE";
//

// GET: /Checkout/AddressAndPayment

public ActionResult AddressAndPayment()

{
return View();
}
//
// POST: /Checkout/AddressAndPayment
[HttpPost]
public ActionResult AddressAndPayment(FormCollection values)
{

var order = new Order();
TryUpdateModel (order);

try
{
if (string.Equals(values["PromoCode"], PromoCode,
StringComparison.OrdinalIgnoreCase) == false)
{
return View(order);
}
else
{
order.Username = User.Identity.Name;
order.OrderDate = DateTime.Now;
//Save Order
storeDB.Orders.Add(order);
storeDB.SaveChanges();
//Process the order
var cart = ShoppingCart.GetCart(this.HttpContext);
cart.CreateOrder(order);
return RedirectToAction("Complete",
new { id = order.OrderId });
}
}

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 118

catch

{

//Invalid - redisplay with errors
return View(order);

}

//
// GET: /Checkout/Complete

public ActionResult Complete(int id)
{

// Validate customer owns this order
bool isValid = storeDB.Orders.Any(
0 => 0.0rderlId == id &&
o.Username == User.Identity.Name);

if (isvalid)
{

}

else

{
}

return View(id);

return View("Error");

Adding the AddressAndPayment view

Now, let’s create the AddressAndPayment view. Right-click on one of the the AddressAndPayment controller
actions and add a view named AddressAndPayment which is strongly typed as an Order and uses the Edit
template, as shown below.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 119

e N ==

View name:

Iﬁkd dressfndPayment I

View engine:

| Razor (CSHTML) -

reate a strongly-typed view

Model class:

Crder (MvchMusicStore.Models) -

Scaffeld temnplate:
| Edit

4

Reference script libraries

[] Create as a partial view

Use a layout or master page:

]

(Leave emnpty if it is set in a Razor _viewstart file)

fMainContent

| Add || Cancel

This view will make use of two of the techniques we looked at while building the StoreManagerEdit view:

e We will use Html.EditorForModel() to display form fields for the Order model
e We will leverage validation rules using an Order class with validation attributes

We'll start by updating the form code to use Html.EditorForModel(), followed by an additional textbox for the
Promo Code. The complete code for the AddressAndPayment view is shown below.

@model MvcMusicStore.Models.Order
@{
}

ViewBag.Title = "Address And Payment";

<script src="@Url.Content("~/Scripts/jquery.validate.min.js")"
type="text/javascript"></script>

<script src="@Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")"
type="text/javascript”></script>

@using (Html.BeginForm()) {

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 120

<h2>Address And Payment</h2>
<fieldset>
<legend>Shipping Information</legend>

@Html.EditorForModel()
</fieldset>
<fieldset>
<legend>Payment</legend>
<p>We're running a promotion: all music is free with the promo code: "FREE"</p>

<div class="editor-label">
@Html.Label("Promo Code")
</div>
<div class="editor-field">
@Html.TextBox("PromoCode")
</div>
</fieldset>

<input type="submit" value="Submit Order" />

Defining validation rules for the Order

Now that our view is set up, we will set up the validation rules for our Order model as we did previously for the
Album model. Right-click on the Models folder and add a class named Order. In addition to the validation
attributes we used previously for the Aloum, we will also be using a Regular Expression to validate the user’s e-
mail address.

using System.Collections.Generic;

using System.ComponentModel;

using System.ComponentModel.DataAnnotations;
using System.Web.Mvc;

namespace MvcMusicStore.Models

{
[Bind(Exclude = "OrderId")]

public partial class Order

{
[ScaffoldColumn(false)]

public int OrderId { get; set; }

[ScaffoldColumn(false)]
public System.DateTime OrderDate { get; set; }

[ScaffoldColumn(false)]
public string Username { get; set; }

[Required(ErrorMessage = "First Name is required")]
[DisplayName("First Name")]
[StringlLength(160)]

public string FirstName { get; set; }

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 121

[Required(ErrorMessage = "Last Name is required")]
[DisplayName("Last Name")]

[StringlLength(160)]

public string LastName { get; set; }

[Required(ErrorMessage = "Address is required")]
[StringlLength(70)]

public string Address { get; set; }
[Required(ErrorMessage = "City is required")]
[StringLength(40)]

public string City { get; set; }
[Required(ErrorMessage = "State is required")]
[StringLength(40)]

public string State { get; set; }
[Required(ErrorMessage = "Postal Code is required")]
[DisplayName("Postal Code")]

[StringlLength(10)]

public string PostalCode { get; set; }
[Required(ErrorMessage = "Country is required")]
[StringlLength(40)]

public string Country { get; set; }
[Required(ErrorMessage = "Phone is required")]
[StringLength(24)]

public string Phone { get; set; }

[Required(ErrorMessage = "Email Address is required")]

[DisplayName("Email Address")]

[RegularExpression(@"[A-Za-z0-9._%+-]+@[A-Za-z0-9.-1+\.[A-Za-z]{2,4}",
ErrorMessage = "Email is is not valid.")]

[DataType(DataType.EmailAddress)]

public string Email { get; set; }

[ScaffoldColumn(false)]
public decimal Total { get; set; }

public List<OrderDetail> OrderDetails { get; set; }

Attempting to submit the form with missing or invalid information will now show error message using client-side
validation.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 122

' ™y
@ Address and Payment - Windows Internet Explorer [= | = ﬂ

@ =~ |§, http://localhost: 26641/ Checkout/AddressAndPayment - | 4 | X | |b Bing P -

w . {€ Address and Payment

* Home Store

ASP.NET MVC MUSIC STORE

Address and Payment

— Shipping Information

First Name

| First Name is required
Last Name

| Last Name is required
Address
[| Address is required
City
[| City is required
State
[| state is required
Postal Code

| Postal Code is required
Country

| Country is required
Phone

[11] The field Phone must be a string with a maximum length of 24.

Email Address
finvalid | Email is is not valid.

— Payment

We're running a promotion: all music is free with the promo code "FREE"

Promo Code

Submit Order

(’l“._ Local intranet | Protected Mode: Off Sy v WMI00% o~

Okay, we’ve done most of the hard work for the checkout process; we just have a few odds and ends to finish.
We need to add two simple views, and we need to take care of the handoff of the cart information during the
login process.

Adding the Checkout Complete view
The Checkout Complete view is pretty simple, as it just needs to display the Order ID. Right-click on the
Complete controller action and add a view named Complete which is strongly typed as an int.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 123

W
e . =

View name:

|Complete |

View engine:

| Razor (CSHTML) -

Create a strongly-typed view
Model class:
inﬂ -

Scaffeld temnplate:

Ernpty Reference script libraries

[] Create as a partial view

Use a layout or master page:

]

(Leave emnpty if it is set in a Razor _viewstart file)

ContentPlaceHolder ID:

fMainContent

Add | [Cancel

Now we will update the view code to display the Order ID, as shown below.
@model int

@{
}

<h2>Checkout Complete</h2>

ViewBag.Title = "Checkout Complete";

<p>Thanks for your order! Your order number is: @Model</p>

<p>How about shopping for some more music in our
@Html.ActionLink("store", "Index", "Home")

</p>

Updating The Error view
The default template includes an Error view in the Shared views folder so that it can be re-used elsewhere in the
site. This Error view contains a very simple error and doesn’t use our site Layout, so we’ll update it.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 124

Since this is a generic error page, the content is very simple. We'll include a message and a link to navigate to
the previous page in history if the user wants to re-try their action.

@{

ViewBag.Title = "Error";
}
<h2>Error</h2>

<p>We're sorry, we've hit an unexpected error.
Click here
if you'd like to go back and try that again.</p>

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 125

10. Final updates to Navigation and Site Design
We’ve completed all the major functionality for our site, but we still have some features to add to the site
navigation, the home page, and the Store Browse page.

Creating the Shopping Cart Summary Partial View
We want to expose the number of items in the user’s shopping cart across the entire site.

LB @ nitpytocainosta0soasstorede 0~ [& | X @ Atbum - The Best of Bee..

* Home = Store | Cart(2)

ASP.NET MVC MUSIC STORE

Rock The Best of Beethoven
Jazz
Metal Sample
Alternative €&
Disco
Blues
Latin Genre: Classical

Reggae Artist: Nicolaus Esterhazy Sinfonia

Pop Frice: 8.99

Classical
Add to cart

built with ASP.NET MVC 3

We can easily implement this by creating a partial view which is added to our Site.master.

As shown previously, the ShoppingCart controller includes a CartSummary action method which returns a partial

view:

//

// GET: /ShoppingCart/CartSummary
[ChildActionOnly]

public ActionResult CartSummary()
{

var cart = ShoppingCart.GetCart(this.HttpContext);

ViewData["CartCount"] = cart.GetCount();

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 126

return PartialView("CartSummary");

To create the CartSummary partial view, right-click on the Views/ShoppingCart folder and select Add View.
Name the view CartSummary and check the “Create a partial view” checkbox as shown below.

CEmm 22)

View name:

CartSumrnary

View engine:

| Razor (CSHTML) -

[] Create a strongly-typed view
Model class:
int
Scaffold temnplate:
Empty

reate as a partial view

(Leave emnpty if it is set in a Razor _viewstart file)

MainContent

| Add || Cancel

The CartSummary partial view is really simple - it’s just a link to the ShoppingCart Index view which shows the
number of items in the cart. The complete code for CartSummary.cshtml is as follows:

@Html.ActionLink("Cart (" + ViewData["CartCount"] + ")",

"Index",
"ShoppingCart",
new { id = "cart-status" })

We can include a partial view in any page in the site, including the Site master, by using the Html.RenderAction
method. RenderAction requires us to specify the Action Name (“CartSummary”) and the Controller Name
(“ShoppingCart”) as below.

@Html.RenderAction("CartSummary", "ShoppingCart")

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 127

Before adding this to the site Layout, we will also create the Genre Menu so we can make all of our Site.master
updates at one time.

Creating the Genre Menu Partial View
We can make it a lot easier for our users to navigate through the store by adding a Genre Menu which lists all
the Genres available in our store.

L SNl @ nitp://localhost40404/Store/T - ~ H = Album - The Essential ...

* Home Store Cart(0) Admin

ASP.NET MVC MUSIC STORE

Rock The Essential Miles Davis [Disc 1]
Jazz
Metal Sample

Alternative &
Disco

Blues
Latin Genre: Jazz

Reggae Artist: Miles Davis
Pop Price: 8.99

Classical
Add to cart

built with ASP.NET MVC 3

We will follow the same steps also create a GenreMenu partial view, and then we can add them both to the Site
master. First, add the following GenreMenu controller action to the StoreController:

//
// GET: /Store/GenreMenu

[ChildActionOnly]
public ActionResult GenreMenu()

{

var genres = storeDB.Genres.TolList();

return PartialView(genres);

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 128

This action returns a list of Genres which will be displayed by the partial view, which we will create next.

Note: We have added the [ChildActionOnly] attribute to this controller action, which indicates that we only want
this action to be used from a Partial View. This attribute will prevent the controller action from being executed by
browsing to /Store/GenreMenu. This isn’t required for partial views, but it is a good practice, since we want to
make sure our controller actions are used as we intend. We are also returning PartialView rather than View,
which lets the view engine know that it shouldn’t use the Layout for this view, as it is being included in other

views.

Right-click on the GenreMenu controller action and create a partial view named GenreMenu which is strongly

typed using the Genre view data class as shown below.

CEmm 2)

View name:

GenreMenu

View engine:

| Razor (CSHTML) -

Create a strongly-typed view

Model class:

Genre (MyvchMusicStore.Models) -

Scaffold template:
EList P Reference script libraries

Create as a partial view

(Leave ernpty if it is set in a Razor _viewstart file)

MainContent

Add] [—

Update the view code for the GenreMenu partial view to display the items using an unordered list as follows.
@model IEnumerable<MvcMusicStore.Models.Genre>

<ul id="categories">
@foreach (var genre in Model)

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 129

<1li>@Html.ActionLink(genre.Name,
"Browse", "Store",
new { Genre = genre.Name }, null)
</1li>
}

Updating Site Layout to display our Partial Views
We can add our partial views to the Site Layout (/Views/Shared/_Layout.cshtml) by calling Html.RenderAction().
We'll add them both in, as well as some additional markup to display them, as shown below:

<!DOCTYPE html>
<html>
<head>
<title>@ViewBag.Title</title>
<link href="@Url.Content("~/Content/Site.css")" rel="stylesheet"
type="text/css" />
<script src="@Url.Content("~/Scripts/jquery-1.4.4.min.js")"
type="text/javascript"></script>
</head>
<body>
<div id="header">
<hl>ASP.NET MVC MUSIC STORE</hl>
<ul id="navlist">
<1i class="first">Home</1i>
Store</1i>
@{Html.RenderAction("CartSummary", "ShoppingCart");}</1i>
Admin</1i>

</div>

@{Html.RenderAction("GenreMenu", "Store");}

<div id="main">
@RenderBody()
</div>

<div id="footer">
built with ASP.NET MVC 3
</div>
</body>
</html>

Now when we run the application, we will see the Genre in the left navigation area and the Cart Summary at the
top.

Update to the Store Browse page
The Store Browse page is functional, but doesn’t look very good. We can update the page to show the albums in
a better layout by updating the view code (found in /Views/Store/Browse.cshtml) as follows:

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 130

@model MvcMusicStore.Models.Genre

@{
}

ViewBag.Title = "Browse Albums";
<div class="genre">
<h3>@Model.Name Albums</h3>

<ul id="album-list">
@foreach (var album in Model.Albums)

{
<1i>

@album.Title

</1li>
}

</div>

Here we are making use of Url.Action rather than Html.ActionLink so that we can apply special formatting to the
link to include the album artwork.

Note: We are displaying a generic album cover for these albums. This information is stored in the database and is
editable via the Store Manager. You are welcome to add your own artwork.

Now when we browse to a Genre, we will see the albums shown in a grid with the album artwork.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 131

e E}“ B http://localhost:40404/Store/Browse?Genre= Classical > m = Browse Albums

Home Store Cart (0) Admin
ASP.NET MVC MUSIC STORE

Rock

Jazz

Metal
Alternative
Disco
Blues

Latin

Reggae

Pop

Classical

Classical Albums

Sarmple
£
(e

The Best of
Beethoven

Pachelbel:

Bach: Goldberg

Bach: The Cello

Canon & Gigue

Sample

oy
e

Sampla

0y
!

Handel: The
Messiah

Haydn:
Symphonies 99

(Highlights)

-104

Tchaikovsky:

The Last Night

Variations

Suites

Sampla

0y
ol

Sampla

fas
i

A Soprano
Inspired

Wagner:
Favourite
Overtures

Respighi:Pines

Strauss:

The Nutcracker

of the Proms

of Rome

Walizes

Updating the Home Page to show Top Selling Albums

We want to feature our top selling albums on the home page to increase sales. We’ll make some updates to our
HomeController to handle that, and add in some additional graphics as well.

First, we'll add a navigation property to our Album class so that EntityFramework knows that they’re associated.
The last few lines of our Album class should now look like this:

public virtual Genre Genre
public virtual Artist Artist
public virtual List<OrderDetail> OrderDetails

{ get; set; }
{ get; set; }
{ get; set; }

Note: This will require adding a using statement to bring in the System.Collections.Generic namespace.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 132

First, we’ll add a storeDB field and the MvcMusicStore.Models using statements, as in our other controllers.
Next, we’ll add the following method to the HomeController which queries our database to find top selling
albums according to OrderDetails.

private List<Album> GetTopSellingAlbums(int count)

{
// Group the order details by album and return
// the albums with the highest count
return storeDB.Albums
.OrderByDescending(a => a.OrderDetails.Count())
.Take(count)
.TolList();
}

This is a private method, since we don’t want to make it available as a controller action. We are including it in
the HomeController for simplicity, but you are encouraged to move your business logic into separate service
classes as appropriate.

With that in place, we can update the Index controller action to query the top 5 selling albums and return them
to the view.

public ActionResult Index()

{
// Get most popular albums
var albums = GetTopSellingAlbums(5);
return View(albums);

}

The complete code for the updated HomeController is as shown below.

using System.Collections.Generic;
using System.Ling;

using System.Web.Mvc;

using MvcMusicStore.Models;

namespace MvcMusicStore.Controllers

{

public class HomeController : Controller
{

//

// GET: /Home/

MusicStoreEntities storeDB = new MusicStoreEntities();

public ActionResult Index()
{
// Get most popular albums
var albums = GetTopSellingAlbums(5);

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 133

return View(albums);

}
private List<Album> GetTopSellingAlbums(int count)
{
// Group the order details by album and return
// the albums with the highest count
return storeDB.Albums
.OrderByDescending(a => a.OrderDetails.Count())
.Take(count)
.ToList();
}

Finally, we’ll need to update our Home Index view so that it can display a list of albums by updating the Model
type and adding the album list to the bottom. We will take this opportunity to also add a heading and a
promotion section to the page.

@model List<MvcMusicStore.Models.Album>

@{
ViewBag.Title = "ASP.NET MVC Music Store";
}
<div id="promotion">
</div>

<h3>Fresh off the grill</h3>

<ul id="album-list">
@foreach (var album in Model)

{
<a href="@Url.Action("Details", "Store",
new { id = album.AlbumId })">

@album.Title
</1i>
}

Now when we run the application, we’ll see our updated home page with top selling albums and our
promotional message.

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 134

@‘)\ @ http://localhost:40404/
NN

ASP.NET MVC MUSIC STORE

Rock

Jazz

Metal
Alternative
Disco
Blues

Latin
Reggae
Pop

Classical

Fresh off the grill

Sample a Sample Sample
&y T oy &y
i S N7

Nevermind The Worst Of Misplaced Greatest Hits Let There Be
Men At Work Childhood Rock

built with ASP.NET MVC 3

Conclusion
We've seen that that ASP.NET MVC makes it easy to create a sophisticated website with database access,

membership, AJAX, etc. pretty quickly. Hopefully this tutorial has given you the tools you need to get started
building your own ASP.NET MVC applications!

MVC Music Store Tutorial v3.0b (MVC 3 Tools Update release) — http://mvcmusicstore.codeplex.com
Tutorial under Creative Commons Attribution 3.0 License
Page 135

	Overview
	1. File -> New Project
	Installing the software
	Creating a new ASP.NET MVC 3 project

	2. Controllers
	Adding a HomeController
	Running the Application
	Adding a StoreController

	3. Views and Models
	Adding a View template
	Using a Layout for common site elements
	Updating the StyleSheet
	Using a Model to pass information to our View
	Adding Links between pages

	4. Data Access
	Database access with Entity Framework Code-First
	Changes to our Model Classes
	Adding the Artist Model Classes
	Updating our Model Classes

	Adding the App_Data folder
	Creating a Connection String in the web.config file
	Adding a Context Class
	Adding our store catalog data

	Querying the Database
	Updating the Store Index to query the database
	Updating Store Browse and Details to use live data

	5. Edit Forms using Scaffolding
	Creating the StoreManagerController
	Modifying a Scaffolded View
	A first look at the Store Manager
	Looking at the Store Manager Controller code
	Store Manager Index and Details actions
	The Create Action Methods
	Passing information to a View using ViewBag
	HTML Helpers to display the Drop Downs in the Create View
	Handling the Posted Form values
	Reading Form Values with Model Binding
	Validating the Model
	Saving the submitted values
	Displaying invalid form submissions with Validation Errors
	Testing the Create Form

	Handling Edits
	Handling Deletion
	Using a custom HTML Helper to truncate text

	6. Using Data Annotations for Model Validation
	Adding Validation to our Album Forms
	Testing the Client-Side Validation

	7. Membership and Authorization
	Adding the AccountController and Views
	Adding an Administrative User with the ASP.NET Configuration site
	Role-based Authorization

	8. Shopping Cart with Ajax Updates
	Adding the Cart, Order, and OrderDetail model classes
	Managing the Shopping Cart business logic
	ViewModels

	The Shopping Cart Controller
	Ajax Updates with jQuery

	9. Registration and Checkout
	Migrating the Shopping Cart
	Creating the CheckoutController
	Adding the AddressAndPayment view
	Defining validation rules for the Order
	Adding the Checkout Complete view
	Updating The Error view

	10. Final updates to Navigation and Site Design
	Creating the Shopping Cart Summary Partial View
	Creating the Genre Menu Partial View
	Updating Site Layout to display our Partial Views
	Update to the Store Browse page
	Updating the Home Page to show Top Selling Albums

	Conclusion

