

Modelling Concepts

Based on Chapter 5 Bennett, McRobb and Farmer Object Oriented Systems Analysis and Design Using UML 4th Edition, McGraw Hill, 2010

In This Lecture You Will Learn:

- What is meant by a model
- The distinction between a model and a diagram
- The UML concept of a model

What is a Model

- Like a map, a model represents something else
- A useful model has the right level of detail and represents only what is important for the task in hand
- Many things can be modelled: bridges, traffic flow, buildings, economic policy

Why Use a Model?

- A model is quicker and easier to build than the real thing
- A model can be used in a simulation
- A model can evolve as we learn
- We can choose which details to include in a model
- A model can represent real or imaginary things from any domain

Modelling Organizations

Organizations are human activity systems.

- The situation is complex
- Stakeholders have different views
- We have to model requirements accurately, completely and unambiguously
- The model must not prejudge the solution

What is a Diagram?

- Abstract shapes are used to represent things or actions from the real world
- Diagrams follow rules or standards
- The standards make sure that different people will interpret the diagram in the same way

Diagrams in UML

• UML diagrams consist of:

Diagrams vs. Models

- A diagram illustrates some aspect of a system.
- A model provides a complete view of a system at a particular stage and from a particular perspective.
- A model may consist of a single diagram, but most consist of many related diagrams and supporting data and documentation.

Relationship between Models and Diagrams

 Use Case Diagrams are one view of the Use Case Model in the Requirements Model

Examples of Models

- Requirements Model
 - complete view of requirements
 - may include other models, such as a Use
 Case Model
 - includes textual description as well as sets of diagrams

Examples of Models

- Behavioural Model
 - shows how the system responds to events in the outside world and the passage of time
 - an initial model may just use Communication
 Diagrams
 - a later model will include Sequence Diagrams and State Machines

Models in UML

- A system is the overall thing that is being modelled
- A subsystem is a part of a system consisting of related elements
- A model is an abstraction of a system or subsystem from a particular perspective
- A model is complete and consistent at the chosen level of abstraction

Models in UML

- Different models present different views of the system, for example:
 - use case view
 - design view
 - process view
 - implementation view
 - deployment view

(Booch et al., 1999)

Packages, Sub-systems and Models

 UML has notation for showing subsystems and models, and also for packages, which are a mechanism for organising models (e.g. in CASE tools)

Developing Models

- During the life of a project using an iterative life cycle, models change along the dimensions of:
 - abstraction-they become more concrete
 - formality—they become more formally specified
 - level of detail—additional detail is added as understanding improves

Development of the Use Case Model

Iteration 1

Obvious use cases. Simple use case descriptions.

Iteration 2

Additional use cases. Simple use case descriptions. Prototypes.

Iteration 3

Structured use cases. Structured use case descriptions. Prototypes.

Summary

In this lecture you have learned about:

- What is meant by a model
- The distinction between a model and a diagram
- The UML concept of a model

References

- Booch, Rumbaugh and Jacobson (1999)
- Bennett, Skelton and Lunn (2005) (For full bibliographic details, see Bennett, McRobb and Farmer)

