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Specifying Operations

Based on Chapter 10 of Bennett, 
McRobb and Farmer: 

Object Oriented Systems Analysis 
and Design Using UML, (4th Edition), 

McGraw Hill, 2010.
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In This Lecture You Will Learn:

• Why operations need to be specified
• What is meant by “Contracts”
• Non-algorithmic ways of describing 

operations:
– Decision Tables
– Pre- and Post-Condition Pairs

• Algorithmic ways of describing operations:
– Structured English and Pseudocode
– Activity Diagrams
– Object Constraint Language



3© 2010 Bennett, McRobb and Farmer

Why We Specify Operations

• From analysis perspective:
– Ensure users’ needs are understood

• From design perspective:
– Guide programmer to an appropriate 

implementation (i.e. method)

• From test perspective:
– Verify that the method does what was 

originally intended
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Operations and Their Effects

• Operations with side-effects may:
– Create or destroy object instances
– Set attribute values
– Form or break links with other objects
– Carry out calculations
– Send messages or events to other objects
– Any combination of these

• Some operations have no side-effects:
– They return data but do not change anything
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Services Among Objects

• When objects collaborate, one object 
typically provides a service to another

• Examples:
– A Client object might ask a Campaign

object for its details
– The same Client object might then ask a 

boundary object to display its related 
Campaign details to the user
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Contracts: an Approach to 
Defining Services

• A service can be defined as a contract 
between the participating objects

• Contracts focus on inputs and outputs

• The intervening process is seen as a black 
box, with irrelevant details hidden

• This emphasises service delivery, and 
ignores implementation
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Contract-Style Operation 
Specification

• Intent / purpose of the operation
• Operation signature, including return type 
• Description of the logic
• Other operations called
• Events transmitted to other objects
• Any attributes set
• Response to exceptions (e.g. an invalid 

parameter)
• Non-functional requirements

(adapted from Larman, 2005 and Allen and Frost, 1998)
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Types of Logic Specification

• Logic description is probably the most 
important element

• Two main categories:
• Non-algorithmic methods focus on what

the operation should achieve—black box 
approach

• Algorithmic types focus on how the 
operation should work —white box 
approach
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Non-Algorithmic Techniques

• Use when correct result matters more than 
the method used to reach it…

• …Or when no decision has yet been made 
about the best method
– Decision tree: complex decisions, multiple 

criteria and steps (not described further here)
– Decision table: similar applications to decision 

tree
– Pre- and Post-Condition Pairs: suitable where 

precise logic is unimportant / uncertain
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Decision Table

• Many variants, but all work by identifying:
– Combinations of initial conditions = ‘rules’

– Outcomes that should result depending on 
what conditions are true = ‘actions’

• Rules and actions are displayed in tabular 
form
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Conditions and actions Rule 1 Rule 2 Rule 3

Conditions

Is budget likely to be overspent? N Y Y

Is overspend likely to exceed 2%? - N Y

Actions

No action X

Send letter X X

Set up meeting X

Example Decision Tree
Conditions to be tested

Possible actions
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• Logically similar to decision table

• Identifies conditions that:
– …must be true for operation to execute = pre-

conditions

– …must be true after operation has executed = 
post-conditions

• May be written in formal language (e.g. 
OCL)

Pre- / Post-Condition Pair
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Pre- / Post-Condition Pair: 
Change staff grade

pre-conditions:
creativeStaffObject is valid

gradeObject is valid

gradeChangeDate is a valid date

gradeChangeDate is greater than or equal to today’s date

post-conditions:
a new staffGradeObject exists

new staffGradeObject linked to creativeStaffObject

new staffGradeObject linked to previous

value of previous staffGradeObject.gradeFinishDate set 
equal to gradeChangeDate - 1 day
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Algorithmic Techniques

• Suitable where a decision can be made 
about the best method to use

• Can be constructed top-down, to handle 
arbitrarily complex functionality

• Examples:
– Structured English

– Activity Diagrams
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Structured English

• Commonly used, easy to learn

• Three types of control structure, derived 
from structured programming:
– Sequences of instructions

– Selection of alternative instructions (or groups 
of instruction)

– Iteration (repetition) of instructions (or groups)
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Sequence in Structured English

• Each instruction is executed in turn, one 
after another:

get client contact name

sale cost = item cost * ( 1 - discount rate )

calculate total bonus

description = new description
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Selection in Structured English

• One or other alternative course is 
followed, depending on result of a test:

if client contact is ’Sushila’

set discount rate to 5%

else

set discount rate to 2%

end if
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Iteration in Structured English

• Instruction or block of instructions is 
repeated
– Can be a set number of repeats

– Or until some test is satisfied:

do while there are more staff in the list

calculate staff bonus

store bonus amount

end do
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Structured English can be 
Arbitrarily Complex

do while there are more staff in the list
calculate bonus for this staff member
begin case

case bonus > £250
add name to ‘star of month’ list

case bonus < £25
create warning letter

end case
store bonus amount

end do
format bonus list
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do while there are more adverts for campaign

get next advert

get cost for this advert

add to cumulative cost for campaign

end do

set total advert cost = final cumulative 
cost

set total campaign cost = total advert cost 
+ (total advert cost X overhead rate)

get campaign budget

if total campaign cost > campaign budget

generate warning

endif
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Activity Diagrams

• Part of UML notation set

• Can be used for operation logic 
specification, among many other uses

• Easy to learn and understand

• Has the immediacy of graphic notation

• Some resemblance to old-fashioned 
flowchart technique
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Example Activity Diagram:
Check campaign budget

[incorrect Campaign]

get Advert 
cost

[more Adverts]

[correct Campaign]

calculate 
Overheads [no more Adverts]

show 
Campaignget Client
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• A formal language used for:
– Precise definition of constraints on model 

elements

– E.g. pre- and post-conditions of operations

• OCL statements can:
– Define queries

– Reference values

– State business rules

Object Constraint Language
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Object Constraint Language

• Most OCL statements consist of:

• Context, Property and Operation

• Context 
– Defines domain within which expression is valid

– Instance of a type, e.g. object in class diagram

– Link (association instance) may be a context

• A property of that instance
– Often an attribute, association-end or query operation
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• OCL operation is applied to the property

• Operations include 
– Arithmetical operators *, +, - and /

– Set operators such as size, isEmpty and 
select

– Type operators such as oclIsTypeOf
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OCL expression Interpretation

context Person
self.gender

In the context of a specific person, the 
value of the property ‘gender’ of that 
person—i.e. a person’s gender.

context Person
inv: self.savings >= 500

The property ‘savings’ of the person 
under consideration must be always be 
greater than or equal to 500.

context Person
self.husband->notEmpty implies
self.husband.gender = male

If the set ‘husband’ associated with a 
person is not empty, then the value of 
the property ‘gender’ of the husband 
must be male. Boldface denotes OCL 
keyword, but has no semantic import.

context Company
inv: self.CEO->size <= 1

The size of the set of the property ‘CEO’ 
of a company must be less than or 
equal to 1.  That is, a company cannot 
have more than 1 Chief Executive 
Officer.

context Company
self.employee->select (age<60)

The set of employees of a company 
whose age is less than 60.
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OCL Used for Pre- / Post-
Conditions

context: CreativeStaff::changeGrade(grade:Grade, 
gradeChangeDate:Date)

pre:
grade oclIsTypeOf(Grade)
gradeChangeDate >= today

post:
self.staffGrade->exists and
self.staffGrade[previous]->notEmpty and
self.staffGrade.gradeStartDate = gradeChangeDate and
self.staffGrade.previous.gradeFinishDate = 
gradeChangeDate - 1 day
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Summary

In this lecture you have learned about:
• The role of operation specifications
• What is meant by “Contracts”
• Algorithmic and non-algorithmic 

techniques, and how they differ
• About the use of:

– Decision Tables, Pre- and Post-Condition 
Pairs, Structured English, Activity Diagrams 
and Object Constraint Language
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References

• Bennett, McRobb and Farmer (2002)
• Yourdon (1989) covers Structured English 

and Pre- / Post-Conditions well
• Senn (1989) is good on Decision Tables
• Larman (1998) takes a contract-based 

approach to O-O analysis and design, with 
examples taken to Java code
(For full bibliographic details, see Bennett, 
McRobb and Farmer)


