
© 2010 Bennett, McRobb and Farmer 1

Specifying Operations

Based on Chapter 10 of Bennett,
McRobb and Farmer:

Object Oriented Systems Analysis
and Design Using UML, (4th Edition),

McGraw Hill, 2010.

2© 2010 Bennett, McRobb and Farmer

In This Lecture You Will Learn:

• Why operations need to be specified
• What is meant by “Contracts”
• Non-algorithmic ways of describing

operations:
– Decision Tables
– Pre- and Post-Condition Pairs

• Algorithmic ways of describing operations:
– Structured English and Pseudocode
– Activity Diagrams
– Object Constraint Language

3© 2010 Bennett, McRobb and Farmer

Why We Specify Operations

• From analysis perspective:
– Ensure users’ needs are understood

• From design perspective:
– Guide programmer to an appropriate

implementation (i.e. method)

• From test perspective:
– Verify that the method does what was

originally intended

4© 2010 Bennett, McRobb and Farmer

Operations and Their Effects

• Operations with side-effects may:
– Create or destroy object instances
– Set attribute values
– Form or break links with other objects
– Carry out calculations
– Send messages or events to other objects
– Any combination of these

• Some operations have no side-effects:
– They return data but do not change anything

5© 2010 Bennett, McRobb and Farmer

Services Among Objects

• When objects collaborate, one object
typically provides a service to another

• Examples:
– A Client object might ask a Campaign

object for its details
– The same Client object might then ask a

boundary object to display its related
Campaign details to the user

6© 2010 Bennett, McRobb and Farmer

Contracts: an Approach to
Defining Services

• A service can be defined as a contract
between the participating objects

• Contracts focus on inputs and outputs

• The intervening process is seen as a black
box, with irrelevant details hidden

• This emphasises service delivery, and
ignores implementation

7© 2010 Bennett, McRobb and Farmer

Contract-Style Operation
Specification

• Intent / purpose of the operation
• Operation signature, including return type
• Description of the logic
• Other operations called
• Events transmitted to other objects
• Any attributes set
• Response to exceptions (e.g. an invalid

parameter)
• Non-functional requirements

(adapted from Larman, 2005 and Allen and Frost, 1998)

8© 2010 Bennett, McRobb and Farmer

Types of Logic Specification

• Logic description is probably the most
important element

• Two main categories:
• Non-algorithmic methods focus on what

the operation should achieve—black box
approach

• Algorithmic types focus on how the
operation should work —white box
approach

9© 2010 Bennett, McRobb and Farmer

Non-Algorithmic Techniques

• Use when correct result matters more than
the method used to reach it…

• …Or when no decision has yet been made
about the best method
– Decision tree: complex decisions, multiple

criteria and steps (not described further here)
– Decision table: similar applications to decision

tree
– Pre- and Post-Condition Pairs: suitable where

precise logic is unimportant / uncertain

10© 2010 Bennett, McRobb and Farmer

Decision Table

• Many variants, but all work by identifying:
– Combinations of initial conditions = ‘rules’

– Outcomes that should result depending on
what conditions are true = ‘actions’

• Rules and actions are displayed in tabular
form

11© 2010 Bennett, McRobb and Farmer

Conditions and actions Rule 1 Rule 2 Rule 3

Conditions

Is budget likely to be overspent? N Y Y

Is overspend likely to exceed 2%? - N Y

Actions

No action X

Send letter X X

Set up meeting X

Example Decision Tree
Conditions to be tested

Possible actions

12© 2010 Bennett, McRobb and Farmer

• Logically similar to decision table

• Identifies conditions that:
– …must be true for operation to execute = pre-

conditions

– …must be true after operation has executed =
post-conditions

• May be written in formal language (e.g.
OCL)

Pre- / Post-Condition Pair

13© 2010 Bennett, McRobb and Farmer

Pre- / Post-Condition Pair:
Change staff grade

pre-conditions:
creativeStaffObject is valid

gradeObject is valid

gradeChangeDate is a valid date

gradeChangeDate is greater than or equal to today’s date

post-conditions:
a new staffGradeObject exists

new staffGradeObject linked to creativeStaffObject

new staffGradeObject linked to previous

value of previous staffGradeObject.gradeFinishDate set
equal to gradeChangeDate - 1 day

14© 2010 Bennett, McRobb and Farmer

Algorithmic Techniques

• Suitable where a decision can be made
about the best method to use

• Can be constructed top-down, to handle
arbitrarily complex functionality

• Examples:
– Structured English

– Activity Diagrams

15© 2010 Bennett, McRobb and Farmer

Structured English

• Commonly used, easy to learn

• Three types of control structure, derived
from structured programming:
– Sequences of instructions

– Selection of alternative instructions (or groups
of instruction)

– Iteration (repetition) of instructions (or groups)

16© 2010 Bennett, McRobb and Farmer

Sequence in Structured English

• Each instruction is executed in turn, one
after another:

get client contact name

sale cost = item cost * (1 - discount rate)

calculate total bonus

description = new description

17© 2010 Bennett, McRobb and Farmer

Selection in Structured English

• One or other alternative course is
followed, depending on result of a test:

if client contact is ’Sushila’

set discount rate to 5%

else

set discount rate to 2%

end if

18© 2010 Bennett, McRobb and Farmer

Iteration in Structured English

• Instruction or block of instructions is
repeated
– Can be a set number of repeats

– Or until some test is satisfied:

do while there are more staff in the list

calculate staff bonus

store bonus amount

end do

19© 2010 Bennett, McRobb and Farmer

Structured English can be
Arbitrarily Complex

do while there are more staff in the list
calculate bonus for this staff member
begin case

case bonus > £250
add name to ‘star of month’ list

case bonus < £25
create warning letter

end case
store bonus amount

end do
format bonus list

20© 2010 Bennett, McRobb and Farmer

do while there are more adverts for campaign

get next advert

get cost for this advert

add to cumulative cost for campaign

end do

set total advert cost = final cumulative
cost

set total campaign cost = total advert cost
+ (total advert cost X overhead rate)

get campaign budget

if total campaign cost > campaign budget

generate warning

endif

21© 2010 Bennett, McRobb and Farmer

Activity Diagrams

• Part of UML notation set

• Can be used for operation logic
specification, among many other uses

• Easy to learn and understand

• Has the immediacy of graphic notation

• Some resemblance to old-fashioned
flowchart technique

22© 2010 Bennett, McRobb and Farmer

Example Activity Diagram:
Check campaign budget

[incorrect Campaign]

get Advert
cost

[more Adverts]

[correct Campaign]

calculate
Overheads [no more Adverts]

show
Campaignget Client

23© 2010 Bennett, McRobb and Farmer

• A formal language used for:
– Precise definition of constraints on model

elements

– E.g. pre- and post-conditions of operations

• OCL statements can:
– Define queries

– Reference values

– State business rules

Object Constraint Language

24© 2010 Bennett, McRobb and Farmer

Object Constraint Language

• Most OCL statements consist of:

• Context, Property and Operation

• Context
– Defines domain within which expression is valid

– Instance of a type, e.g. object in class diagram

– Link (association instance) may be a context

• A property of that instance
– Often an attribute, association-end or query operation

25© 2010 Bennett, McRobb and Farmer

• OCL operation is applied to the property

• Operations include
– Arithmetical operators *, +, - and /

– Set operators such as size, isEmpty and
select

– Type operators such as oclIsTypeOf

26© 2010 Bennett, McRobb and Farmer

OCL expression Interpretation

context Person
self.gender

In the context of a specific person, the
value of the property ‘gender’ of that
person—i.e. a person’s gender.

context Person
inv: self.savings >= 500

The property ‘savings’ of the person
under consideration must be always be
greater than or equal to 500.

context Person
self.husband->notEmpty implies
self.husband.gender = male

If the set ‘husband’ associated with a
person is not empty, then the value of
the property ‘gender’ of the husband
must be male. Boldface denotes OCL
keyword, but has no semantic import.

context Company
inv: self.CEO->size <= 1

The size of the set of the property ‘CEO’
of a company must be less than or
equal to 1. That is, a company cannot
have more than 1 Chief Executive
Officer.

context Company
self.employee->select (age<60)

The set of employees of a company
whose age is less than 60.

27© 2010 Bennett, McRobb and Farmer

OCL Used for Pre- / Post-
Conditions

context: CreativeStaff::changeGrade(grade:Grade,
gradeChangeDate:Date)

pre:
grade oclIsTypeOf(Grade)
gradeChangeDate >= today

post:
self.staffGrade->exists and
self.staffGrade[previous]->notEmpty and
self.staffGrade.gradeStartDate = gradeChangeDate and
self.staffGrade.previous.gradeFinishDate =
gradeChangeDate - 1 day

28© 2010 Bennett, McRobb and Farmer

Summary

In this lecture you have learned about:
• The role of operation specifications
• What is meant by “Contracts”
• Algorithmic and non-algorithmic

techniques, and how they differ
• About the use of:

– Decision Tables, Pre- and Post-Condition
Pairs, Structured English, Activity Diagrams
and Object Constraint Language

29© 2010 Bennett, McRobb and Farmer

References

• Bennett, McRobb and Farmer (2002)
• Yourdon (1989) covers Structured English

and Pre- / Post-Conditions well
• Senn (1989) is good on Decision Tables
• Larman (1998) takes a contract-based

approach to O-O analysis and design, with
examples taken to Java code
(For full bibliographic details, see Bennett,
McRobb and Farmer)

