
Further abstraction
techniques

Abstract classes and interfaces

5.0

2

Main concepts to be covered

• Abstract classes
• Interfaces
• Multiple inheritance

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

3

Simulations

• Programs regularly used to simulate
real-world activities.
– city traffic
– the weather
– nuclear processes
– stock market fluctuations
– environmental changes

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

4

Simulations

• They are often only partial
simulations.

• They often involve simplifications.
– Greater detail has the potential to

provide greater accuracy.
– Greater detail typically requires more

resource.
• Processing power.
• Simulation time.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

5

Benefits of simulations

• Support useful prediction.
– The weather.

• Allow experimentation.
– Safer, cheaper, quicker.

• Example:
– ‘How will the wildlife be affected if we

cut a highway through the middle of this
national park?’

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

6

Predator-prey simulations

• There is often a delicate balance
between species.
– A lot of prey means a lot of food.
– A lot of food encourages higher predator

numbers.
– More predators eat more prey.
– Less prey means less food.
– Less food means ...

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

7

The foxes-and-rabbits project

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

8

Main classes of interest

• Fox
– Simple model of a type of predator.

• Rabbit
– Simple model of a type of prey.

• Simulator
– Manages the overall simulation task.
– Holds a collection of foxes and rabbits.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

9

The remaining classes

• Field
–Represents a 2D field.

• Location
–Represents a 2D position.

• SimulatorView, FieldStats,
Counter
–Maintain statistics and present a

view of the field.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

10

Example of the visualization

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

11

A Rabbit’s state

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

public class Rabbit
{

Static fields omitted.

// Individual characteristics (instance fields).

// The rabbit's age.
private int age;
// Whether the rabbit is alive or not.
private boolean alive;
// The rabbit's position
private Location location;
// The field occupied
private Field field;

Methods omitted.
}

12

A Rabbit’s behavior

• Managed from the run method.

• Age incremented at each simulation
‘step’.
– A rabbit could die at this point.

• Rabbits that are old enough might
breed at each step.
– New rabbits could be born at this point.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

13

Rabbit simplifications

• Rabbits do not have different
genders.
– In effect, all are female.

• The same rabbit could breed at every
step.

• All rabbits die at the same age.
• Others?

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

14

A Fox’s state

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

public class Fox
{

Static fields omitted

// The fox's age.
private int age;
// Whether the fox is alive or not.
private boolean alive;
// The fox's position
private Location location;
// The field occupied
private Field field;
// The fox's food level, which is increased
// by eating rabbits.
private int foodLevel;

Methods omitted.
}

15

A Fox’s behavior

• Managed from the hunt method.

• Foxes also age and breed.
• They become hungry.
• They hunt for food in adjacent

locations.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

16

Configuration of foxes

• Similar simplifications to rabbits.
• Hunting and eating could be modeled

in many different ways.
– Should food level be additive?
– Is a hungry fox more or less likely to

hunt?

• Are simplifications ever acceptable?

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

17

The Simulator class

• Three key components:
– Setup in the constructor.
– The populate method.

• Each animal is given a random starting age.

– The simulateOneStep method.
• Iterates over separate populations of foxes

and rabbits.
• Two Field objects are used: field and
updatedField.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

18

The update step

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

for(Iterator<Rabbit> it = rabbits.iterator();
it.hasNext();) {

Rabbit rabbit = it.next();
rabbit.run(newRabbits);
if(! rabbit.isAlive()) {

it.remove();
}

}
…
for(Iterator<Fox> it = foxes.iterator();

it.hasNext();) {
Fox fox = it.next();
fox.hunt(newFoxes);
if(! fox.isAlive()) {

it.remove();
}

}

19

Room for improvement

• Fox and Rabbit have strong
similarities but do not have a
common superclass.

• The update step involves similar-
looking code.

• The Simulator is tightly coupled to
specific classes.
– It ‘knows’ a lot about the behavior of

foxes and rabbits.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

20

The Animal superclass

• Place common fields in Animal:
– age, alive, location

• Method renaming to support
information hiding:
– run and hunt become act.

• Simulator can now be
significantly decoupled.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

21

Revised (decoupled) iteration

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

for(Iterator<Animal> it = animals.iterator();
it.hasNext();) {

Animal animal = iter.next();
animal.act(newAnimals);
// Remove dead animals from simulation
if(! animal.isAlive()) {

it.remove();
}

}

22

The act method of Animal

• Static type checking requires
an act method in Animal.

• There is no obvious shared
implementation.

• Define act as abstract:
abstract public void act(List<Animal> newAnimals);

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

23

Abstract classes and methods

• Abstract methods have abstract in the
signature.

• Abstract methods have no body.
• Abstract methods make the class abstract.
• Abstract classes cannot be instantiated.
• Concrete subclasses complete the

implementation.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

24

The Animal class

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

public abstract class Animal
{

fields omitted

/**
* Make this animal act - that is: make it do
* whatever it wants/needs to do.
*/
abstract public void act(List<Animal> newAnimals);

other methods omitted
}

25

Further abstraction

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

26

Selective drawing
(multiple inheritance)

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

27

Multiple inheritance

• Having a class inherit directly from
multiple ancestors.

• Each language has its own rules.
– How to resolve competing definitions?

• Java forbids it for classes.
• Java permits it for interfaces.

– No competing implementation.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

28

An Actor interface

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

public interface Actor
{

/**
* Perform the actor's regular behavior.
* @param newActors A list for storing newly created
* actors.
*/
void act(List<Actor> newActors);

/**
* Is the actor still active?
* @return true if still active, false if not.
*/
boolean isActive();

}

29

Classes implement an
interface

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

public class Fox extends Animal implements Drawable
{

...
}

public class Hunter implements Actor, Drawable
{

...
}

30

Interfaces as types

• Implementing classes do not inherit
code, but ...

• ... implementing classes are subtypes
of the interface type.

• So, polymorphism is available with
interfaces as well as classes.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

31

Features of interfaces

• All methods are abstract.
• There are no constructors.
• All methods are public.
• All fields are public, static and final.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

32

Interfaces as specifications

• Strong separation of functionality from
implementation.
– Though parameter and return types are

mandated.

• Clients interact independently of the
implementation.
– But clients can choose from alternative

implementations.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

33

Alternative implementations

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

34

The Class class

• A Class object is returned by
getClass() in Object.

• The .class suffix provides a Class
object:
Fox.class

• Used in SimulatorView:
Map<Class, Color> colors;

• String getName() for the class
name.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

35

Review

• Inheritance can provide shared
implementation.
– Concrete and abstract classes.

• Inheritance provides shared type
information.
– Classes and interfaces.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

36

Review

• Abstract methods allow static type
checking without requiring
implementation.

• Abstract classes function as
incomplete superclasses.
– No instances.

• Abstract classes support
polymorphism.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

37

Review

• Interfaces provide specification
without implementation.
– Interfaces are fully abstract.

• Interfaces support polymorphism.
• Java interfaces support multiple

inheritance.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

