
Well-behaved objects

5.0



2

Main concepts to be covered

• Testing
• Debugging
• Test automation
• Writing for maintainability

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



3

Code snippet of the day

public void test() 

{

int sum = 1;

for (int i = 0; i <= 4; i++); 

{

sum = sum + 1;

}

System.out.println("The result is: " + sum);

System.out.println("Double result: " + sum+sum);

}

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

What is the output?



4

Possible results

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

The result is: 6

The result is: 11

The result is: 5

The result is: 2

Double result: 12

Double result: 4

Double result: 22

Double result: 66

The result is: 2
Double result: 22

Which is printed?



5

Code snippet of the day

public void test() 

{

int sum = 1;

for (int i = 0; i <= 4; i++); 

{

sum = sum + 1;

}

System.out.println("The result is: " + sum);

System.out.println("Double result: " + sum+sum);

}

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



6

We have to deal with errors

• Early errors are usually syntax errors.
– The compiler will spot these.

• Later errors are usually logic errors.
– The compiler cannot help with these.
– Also known as bugs.

• Some logical errors have no immediately 
obvious manifestation.
– Commercial software is rarely error free.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



7

Prevention vs Detection
(Developer vs Maintainer)

• We can lessen the likelihood of 
errors.
– Use software engineering techniques, 

like encapsulation.

• We can improve the chances of 
detection.
– Use software engineering practices, like 

modularization and documentation.

• We can develop detection skills.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



8

Testing and debugging

• These are crucial skills.
• Testing searches for the presence of 

errors.
• Debugging searches for the source of 

errors.
– The manifestation of an error may well 

occur some ‘distance’ from its source.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



9

Testing and debugging 
techniques

• Unit testing (within BlueJ)
• Test automation
• Manual walkthroughs
• Print statements
• Debuggers

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



10

Unit testing

• Each unit of an application may be tested.
– Method, class, module (package in Java).

• Can (should) be done during development.
– Finding and fixing early lowers development 

costs (e.g. programmer time).
– A test suite is built up.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



11

Testing fundamentals

• Understand what the unit should do –
its contract.
– You will be looking for violations.
– Use positive tests and negative tests.

• Test boundaries.
– Zero, One, Full.

• Search an empty collection.
• Add to a full collection.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



Well-behaved objects

Test automation



13

Main concepts to be covered

• Unit testing
• JUnit
• Regression testing
• Test cases
• Test classes
• Assertions
• Fixtures

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



14

Unit testing within BlueJ

• Objects of individual classes can be 
created.

• Individual methods can be invoked.
• Inspectors provide an up-to-date view 

of an object’s state.
• Explore through the online-shop 

project.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



15

Test automation

• Good testing is a creative process, but ...
• ... thorough testing is time consuming and 

repetitive.
• Regression testing involves re-running 

tests.
• Use of a test rig or test harness can relieve 

some of the burden.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



16

Test harness

• Additional test classes are written to 
automate the testing.

• Objects of the harness classes 
replace human interactivity.

• Creativity and imagination required 
to create these test classes.

• Test classes must be kept up to date 
as functionality is added.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



17

Test automation

• Test frameworks exist to support 
automation.

• Explore fuller automation through 
the online-shop-junit project.
– Intervention only required if a failure is 

reported.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



18

Demo

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



19

JUnit

• JUnit is a Java test framework
• Test cases are methods that contain 

tests
• Test classes contain test methods
• Assertions are used to assert 

expected method results
• Fixtures are used to support 

multiple tests

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



Well-behaved objects

Debugging



21

Prevention vs Detection
(Developer vs Maintainer)

• We can lessen the likelihood of errors.
• Use software engineering techniques, like 

encapsulation.
• Pay attention to cohesion and coupling.

• We can improve the chances of 
detection.
• Use software engineering practices, like 

modularization and good documentation.

• We can develop detection skills.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



22

Debugging techniques

• Manual walkthroughs
• Print statements
• Debuggers

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



23

Modularization and interfaces

• Applications often consist of different 
modules.
– E.g. so that different teams can work on them.

• The interface between modules must be 
clearly specified.
– Supports independent concurrent 

development.
– Increases the likelihood of successful 

integration.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



24

Modularization in a calculator

• Each module does not need to know 
implementation details of the other.
– User controls could be a GUI or a hardware 

device.
– Logic could be hardware or software.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



25

Method headers as an 
interface

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

// Return the value to be displayed. 
public int getDisplayValue();

// Call when a digit button is pressed.
public void numberPressed(int number);

// Plus operator is pressed.
public void plus();

// Minus operator is pressed.
public void minus();

// Call to complete a calculation.
public void equals();

// Call to reset the calculator.
public void clear();



26

Debugging

• It is important to develop code-
reading skills.
– Debugging will often be performed on 

others’ code.

• Techniques and tools exist to support 
the debugging process.

• Explore through the calculator-
engine project.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



27

Manual walkthroughs

• Relatively underused.
– A low-tech approach.
– More powerful than appreciated.

• Get away from the computer!
• ‘Run’ a program by hand.
• High-level (Step) or low-level (Step 

into) views.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



28

Tabulating object state

• An object’s behavior is largely 
determined by its state …

• … so incorrect behavior is often the 
result of incorrect state.

• Tabulate the values of key fields.
• Document state changes after each 

method call.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



29

Verbal walkthroughs

• Explain to someone else what the 
code is doing.
– They might spot the error.
– The process of explaining might help you 

to spot it for yourself.

• Group-based processes exist for 
conducting formal walkthroughs or 
inspections.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



30

Print statements

• The most popular technique.
• No special tools required.
• All programming languages support them.
• Only effective if the right methods are 

documented.
• Output may be voluminous!
• Turning off and on requires forethought.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



31

Choosing a test strategy

• Be aware of the available strategies.
• Choose strategies appropriate to the 

point of development.
• Automate whenever possible.

– Reduces tedium.
– Reduces human error.
– Makes (re)testing more likely.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



32

Debuggers

• Debuggers are both language- and 
environment-specific.
– BlueJ has an integrated debugger.

• Support breakpoints.
• Step and Step-into controlled 

execution.
• Call sequence (stack).
• Object state.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



33

Review

• Errors are a fact of life in programs.
• Good software development techniques 

can reduce their occurrence.
• Testing and debugging skills are essential.
• Make testing a habit.
• Automate testing where possible.
• Continually repeat tests.
• Practice a range of debugging skills.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling


