
Designing classes

How to write classes in a way that 
they are easily understandable, 

maintainable and reusable

5.0



2

Main concepts to be covered

• Responsibility-driven design
• Coupling
• Cohesion
• Refactoring

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



3

Software changes

• Software is not like a novel that is 
written once and then remains 
unchanged.

• Software is extended, corrected, 
maintained, ported, adapted, …

• The work is done by different people 
over time (often decades).

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



4

Change or die

• There are only two options for 
software:
– Either it is continuously maintained
– or it dies.

• Software that cannot be maintained 
will be thrown away.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



5

World of Zuul

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Explore 
zuul-bad



6

The Zuul Classes

• Game: The starting point and main 
control loop.

• Room: A room in the game.
• Parser: Reads user input.
• Command: A user command.
• CommandWords: Recognized user 

commands.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



7

Code and design quality

• If we are to be critical of code 
quality, we need evaluation criteria.

• Two important concepts for assessing 
the quality of code are:
– Coupling
– Cohesion

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



8

Coupling

• Coupling refers to links between 
separate units of a program.

• If two classes depend closely on 
many details of each other, we say 
they are tightly coupled.

• We aim for loose coupling.
• A class diagram provides (limited) 

hints at the degree of coupling.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



9

Cohesion

• Cohesion refers to the number and 
diversity of tasks that a single unit is 
responsible for.

• If each unit is responsible for one 
single logical task, we say it has high 
cohesion.

• We aim for high cohesion.
• ‘Unit’ applies to classes, methods 

and modules (packages).

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



10

An example to test quality

• Add two new directions to the 
'World of Zuul':
• “up”
• “down”

• What do you need to change to do 
this?

• How easy are the changes to apply 
thoroughly?

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



Designing classes

Coupling, cohesion, and 
responsibility-driven design



12

Coupling (reprise)

• Coupling refers to links between 
separate units of a program.

• If two classes depend closely on 
many details of each other, we say 
they are tightly coupled.

• We aim for loose coupling.
• A class diagram provides (limited) 

hints at the degree of coupling.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



13

Loose coupling

• We aim for loose coupling.
• Loose coupling makes it possible to:

– understand one class without reading 
others;

– change one class with little or no effect 
on other classes.

• Thus: loose coupling increases 
maintainability.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



14

Tight coupling

• We try to avoid tight coupling.
• Changes to one class bring a cascade 

of changes to other classes.
• Classes are harder to understand in 

isolation.
• Flow of control between objects of 

different classes is complex.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



15

Cohesion (reprise)

• Cohesion refers to the number and 
diversity of tasks that a single unit is 
responsible for.

• If each unit is responsible for one 
single logical task, we say it has high 
cohesion.

• We aim for high cohesion.
• ‘Unit’ applies to classes, methods 

and modules (packages).

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



16

High cohesion

• We aim for high cohesion.
• High cohesion makes it easier to:

– understand what a class or method 
does;

– use descriptive names for variables, 
methods and classes;

– reuse classes and methods.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



17

Loose cohesion

• We aim to avoid loosely cohesive 
classes and methods.

• Methods perform multiple tasks.
• Classes have no clear identity.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



18

Cohesion applied at different 
levels

• Class level:
– Classes should represent one single, well 

defined entity.

• Method level:
– A method should be responsible for one 

and only one well defined task.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



19

Code duplication

• Code duplication 
– is an indicator of bad design,
– makes maintenance harder,
– can lead to introduction of errors during 

maintenance.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



20

Responsibility-driven design

• Question: where should we add a 
new method (which class)?

• Each class should be responsible for 
manipulating its own data.

• The class that owns the data should 
be responsible for processing it.

• RDD leads to low coupling.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



21

Localizing change

• One aim of reducing coupling and 
responsibility-driven design is to 
localize change.

• When a change is needed, as few 
classes as possible should be 
affected.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



22

Thinking ahead

• When designing a class, we try to 
think what changes are likely to be 
made in the future.

• We aim to make those changes easy.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



23

Refactoring

• When classes are maintained, often 
code is added.

• Classes and methods tend to become 
longer.

• Every now and then, classes and 
methods should be refactored to 
maintain cohesion and low coupling.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



24

Refactoring and testing

• When refactoring code, separate the 
refactoring from making other 
changes.

• First do the refactoring only, without 
changing the functionality.

• Test before and after refactoring to 
ensure that nothing was broken.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



25

Design questions

• Common questions:
– How long should a class be?
– How long should a method be?

• These can now be answered in terms 
of cohesion and coupling.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



26

Design guidelines

• A method is too long if it does more 
then one logical task.

• A class is too complex if it represents 
more than one logical entity.

• Note: these are guidelines - they still 
leave much open to the designer.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



27

Enumerated Types

• A language feature.
• Uses enum instead of class to 

introduce a type name.
• Their simplest use is to define a set 

of significant names.
– Alternative to static int constants.

– When the constants’ values would be 
arbitrary.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



28

A basic enumerated type

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

public enum CommandWord
{

// A value for each command word,
// plus one for unrecognised commands.
GO, QUIT, HELP, UNKNOWN;

}

• Each name represents an object of the 
enum type, e.g., CommandWord.HELP.

• Enum objects are not created directly.
• Enum definitions can also have fields, 

constructors and methods.



29

Review

• Programs are continuously changed.
• It is important to make this change 

possible.
• Quality of code requires much more 

than just performing correct at one 
time.

• Code must be understandable and 
maintainable.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



30

Review

• Good quality code avoids duplication, 
displays high cohesion, low coupling.

• Coding style (commenting, naming, 
layout, etc.) is also important.

• There is a big difference in the 
amount of work required to change 
poorly structured and well structured 
code.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling


