
Grouping objects

Iterators

Iterator and iterator()

• Collections have an iterator() method.
• This returns an Iterator object.
• Iterator<E> has three methods:

– boolean hasNext()

– E next()

– void remove()

3

Using an Iterator object

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Iterator<ElementType> it = myCollection.iterator();
while(it.hasNext()) {

call it.next() to get the next object
do something with that object

}

java.util.Iterator returns an Iterator object

public void listAllFiles()
{

Iterator<Track> it = files.iterator();
while(it.hasNext()) {

Track tk = it.next();
System.out.println(tk.getDetails());

}
}

4

Iterator mechanics

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

5Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

:Element

myList:List

:Element :Element

:Iterator

myList.iterator()

:Element

6Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

:Element :Element :Element

:Iterator

hasNext()? ✔
next()

Element e = iterator.next();

:Element

:Iterator

myList:List

7Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

:Element :Element :Element

hasNext()? ✔
next()

:Element

:Iterator :Iterator

myList:List

8Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

:Element :Element :Element

hasNext()? ✔
next()

:Element

:Iterator :Iterator

myList:List

9Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

:Element :Element :Element

hasNext()? ✔
next()

:Element

:Iterator :Iterator

myList:List

10Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

:Element :Element :Element

hasNext()? ✗

:Element

:Iterator

myList:List

11

Index versus Iterator

• Ways to iterate over a collection:
– for-each loop.

• Use if we want to process every element.

– while loop.
• Use if we might want to stop part way through.
• Use for repetition that doesn't involve a collection.

– Iterator object.
• Use if we might want to stop part way through.
• Often used with collections where indexed access is not very efficient, or

impossible.
• Use to remove from a collection.

• Iteration is an important programming pattern.
Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

12

Removing from a collection

Iterator<Track> it = tracks.iterator();
while(it.hasNext()) {

Track t = it.next();
String artist = t.getArtist();
if(artist.equals(artistToRemove)) {

it.remove();
}

}

Use the Iterator’s remove method.

13

Review

• Loop statements allow a block of statements to be
repeated.

• The for-each loop allows iteration over a whole collection.
• The while loop allows the repetition to be controlled by a

boolean expression.
• All collection classes provide special Iterator objects

that provide sequential access to a whole collection.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

14

The auction project

• The auction project provides further illustration of
collections and iteration.

• Examples of using null.

• Anonymous objects.
• Chaining method calls.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

15

The auction project

16

null

• Used with object types.
• Used to indicate, 'no object'.
• We can test if an object variable holds the null

value:

if(highestBid == null) …

• Used to indicate ‘no bid yet’.

17

Anonymous objects

• Objects are often created and handed on
elsewhere immediately:

Lot furtherLot = new Lot(…);
lots.add(furtherLot);

• We don’t really need furtherLot:

lots.add(new Lot(…));

18

Chaining method calls

• Methods often return objects.
• We often immediately call a method on the

returned object.
Bid bid = lot.getHighestBid();
Person bidder = bid.getBidder();

• We can use the anonymous object concept and
chain method calls:
lot.getHighestBid().getBidder()

19

Chaining method calls

String name =
lot.getHighestBid().getBidder().getName();

• Each method in the chain is called on the object
returned from the previous method call in the
chain.

Returns a Bid object from the Lot

Returns a Person object from the Bid

Returns a String object from the Person

Grouping objects

Arrays

21

Fixed-size collections

• Sometimes the maximum collection size can be
pre-determined.

• A special fixed-size collection type is available: an
array.

• Unlike the flexible List collections, arrays can
store object references or primitive-type values.

• Arrays use a special syntax.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

22

The weblog-analyzer project

• Web server records details of each access.
• Supports analysis tasks:

– Most popular pages.
– Busiest periods.
– How much data is being delivered.
– Broken references.

• Analyze accesses by hour.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

23

Creating an array object

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

public class LogAnalyzer
{

private int[] hourCounts;
private LogfileReader reader;

public LogAnalyzer()
{

hourCounts = new int[24];
reader = new LogfileReader();

}
...

}

Array object creation
— specifies size

Array variable declaration
— does not contain size

24

The hourCounts array

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

25

Using an array

• Square-bracket notation is used to access an array
element: hourCounts[...]

• Elements are used like ordinary variables.
• The target of an assignment:

hourCounts[hour] = ...;

• In an expression:
hourCounts[hour]++;

adjusted = hourCounts[hour] – 3;

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

26

Standard array use

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

private int[] hourCounts;
private String[] names;

...

hourCounts = new int[24];

...

hourcounts[i] = 0;
hourcounts[i]++;
System.out.println(hourcounts[i]);

declaration

creation

use

27

Array literals

• Array literals in this form can only be
used in declarations.

• Related uses require new:

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

private int[] numbers = { 3, 15, 4, 5 };

declaration,
creation and
initialization

numbers = new int[] {
3, 15, 4, 5

};

• The size is inferred from the data.

28

Array length

• NB: length is a field rather than a
method!

• It cannot be changed – ‘fixed size’.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

private int[] numbers = { 3, 15, 4, 5 };

int n = numbers.length;

no brackets!

29

The for loop

• There are two variations of the for loop, for-each
and for.

• The for loop is often used to iterate a fixed
number of times.

• Often used with a variable that changes a fixed
amount on each iteration.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

30

For loop pseudo-code

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

for(initialization; condition; post-body action) {
statements to be repeated

}

General form of the for loop

Equivalent in while-loop form

initialization;
while(condition) {

statements to be repeated
post-body action

}

31

A Java example

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

for(int hour = 0; hour < hourCounts.length; hour++) {
System.out.println(hour + ": " + hourCounts[hour]);

}

int hour = 0;
while(hour < hourCounts.length) {

System.out.println(hour + ": " + hourCounts[hour]);
hour++;

}

for loop version

while loop version

32

Practice

• Given an array of numbers, print out all the
numbers in the array, using a for loop.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

int[] numbers = { 4, 1, 22, 9, 14, 3, 9};

for ...

33

Practice

• Fill an array with the Fibonacci sequence.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

int[] fib = new int[100];

fib[0] = 0;
fib[1] = 1;

for ...

0 1 1 2 3 5 8 13 21 34 ...

34

for loop with bigger step

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

// Print multiples of 3 that are below 40.

for(int num = 3; num < 40; num = num + 3) {

System.out.println(num);

}

35

Review

• Arrays are appropriate where a fixed-size
collection is required.

• Arrays use a special syntax.
• For loops are used when an index variable is

required.
• For loops offer an alternative to while loops when

the number of repetitions is known.
• Used with a regular step size.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

