
Grouping objects

Introduction to collections – Part 2

5.0



Grouping objects

Collections and the for-each loop



3

Main concepts to be covered

• Collections
• Loops: the for-each loop

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



4

Iteration

• We often want to perform some actions an arbitrary 
number of times.
– E.g., print all the file names in the organizer. How many are 

there?

• Most programming languages include loop statements to 
make this possible.

• Java has several sorts of loop statement.
– We will start with its for-each loop.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



5

Iteration fundamentals

• We often want to repeat some actions over and 
over.

• Loops provide us with a way to control how many 
times we repeat those actions.

• With collections, we often want to repeat things 
once for every object in a particular collection.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



6

For-each loop pseudo code

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

for(ElementType element : collection) {
loop body

} 

For each element in collection, do the things in the loop body.

loop header
for keyword

Statement(s) to be repeated

Pseudo-code expression of the actions 
of a for-each loop

General form of the for-each loop



7

A Java example

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

/**
* List all file names in the organizer.
*/
public void listAllFiles()
{

for(String filename : files) {
System.out.println(filename);

}
} 

for each filename in files, print out filename



8

Review

• Loop statements allow a block of 
statements to be repeated.

• The for-each loop allows iteration over a 
whole collection.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



9

Selective processing

• Statements can be nested, giving greater 
selectivity:

public void findFiles(String searchString)
{

for(String filename : files) {
if(filename.contains(searchString)) {

System.out.println(filename);
}

}
} 



10

Critique of for-each

• Easy to write.
• Termination happens naturally.
• The collection cannot be changed.
• There is no index provided.

– Not all collections are index-based.

• We can’t stop part way through;
– e.g. find-the-first-that-matches.

• It provides ‘definite iteration’ – aka ‘bounded iteration’.



Grouping objects

Indefinite iteration - the while loop



12

Main concepts to be covered

• The difference between definite 
and indefinite (unbounded) 
iteration.

• The while loop

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



13

Search tasks are indefinite

• We cannot predict, in advance, how many places 
we will have to look.

• Although, there may well be an absolute limit –
i.e., checking every possible location.

• ‘Infinite loops’ are also possible.
– Through error or the nature of the task.



14

The while loop

• A for-each loop repeats the loop body for each 
object in a collection.

• Sometimes we require more variation than this.
• We use a boolean condition to decide whether or 

not to keep going.
• A while loop provides this control.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



15

While loop pseudo code

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

while(loop condition) {
loop body

} 

while we wish to continue, do the things in the loop body

boolean test
while keyword

Statements to be repeated

Pseudo-code expression of the actions of 
a while loop

General form of a while loop



16

Looking for your keys

while(the keys are missing) {

look in the next place;

}

Or:

while(not (the keys have been found)) {

look in the next place;

}



17

Looking for your keys

boolean searching = true;

while(searching) {

if(they are in the next place) {

searching = false;

}

}

Suppose we don’t find them?



18

A Java example

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

/**
* List all file names in the organizer.
*/
public void listAllFiles()
{

int index = 0;
while(index < files.size()) {

String filename = files.get(index);
System.out.println(filename);
index++;

}
} 

Increment index by 1

while the value of index is less than the size of the collection, 
get and print the next file name, and then increment index



19

Elements of the loop

• We have declared an index variable.
• The condition must be expressed correctly.
• We have to fetch each element.
• The index variable must be incremented explicitly.



20

for-each versus while

• for-each:
– easier to write.
– safer: it is guaranteed to stop.

• while:
– we don’t have to process the whole collection. 
– doesn’t even have to be used with a collection.
– take care: could be an infinite loop.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



21

Searching a collection

• A fundamental activity.
• Applicable beyond collections.
• Necessarily indefinite.
• We must code for both success and failure –

exhausted search.
• Both must make the loop’s condition false.
• The collection might be empty.



22

Finishing a search

• How do we finish a search?
• Either there are no more items to check:
index >= files.size()

• Or the item has been found:
found == true
found
! searching



23

Continuing a search

• With a while loop we need to state the condition 
for continuing:

• So the loop’s condition will be the opposite of that 
for finishing:
index < files.size() && ! found
index < files.size() && searching

• NB: ‘or’ becomes ‘and’ when inverting everything.



24

Searching a collection

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

int index = 0;
boolean found = false;
while(index < files.size() && !found) {

String file = files.get(index);
if(file.contains(searchString)) {

// We don't need to keep looking.
found = true;

}
else {

index++;
}

}
// Either we found it at index, 
// or we searched the whole collection.



25

Indefinite iteration

• Does the search still work if the collection is 
empty?

• Yes! The loop’s body won’t be entered in that 
case.

• Important feature of while:
– The body will be executed zero or more times.



26

While without a collection

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

// Print all even numbers from 2 to 30.
int index = 2;
while(index <= 30) {

System.out.println(index);
index = index + 2;

}



27

The String class

• The String class is defined in the java.lang
package.

• It has some special features that need a little care.
• In particular, comparison of String objects can 

be tricky.



28

Side note: String equality

if(input == "bye") {

...

}

if(input.equals("bye")) {

...

}

Always use .equals for text equality.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

tests identity

tests equality



29

Identity vs equality 1

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Other (non-String) objects:

person1 == person2 ?

“Fred”

:Person

person1 person2

“Jill”

:Person



30

Identity vs equality 2

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Other (non-String) objects:

person1 == person2 ?

“Fred”

:Person

person1 person2

“Fred”

:Person



31

Identity vs equality 3

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Other (non-String) objects:

person1 == person2 ?

“Fred”

:Person

person1 person2

“Fred”

:Person



32

Identity vs equality (Strings)

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

"bye"

:String

input

"bye"

:String

String input = reader.getInput();

if(input == "bye") {

...

}

== ?

 (may be) false!

== tests identity



33

Identity vs equality (Strings)

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

"bye"

:String

input

"bye"

:String

String input = reader.getInput();

if(input.equals("bye")) {

...

}

equals ?

 true!

equals tests 
equality



34

The problem with Strings

• The compiler merges identical String literals in 
the program code.
– The result is reference equality for apparently distinct 
String objects.

• But this cannot be done for identical strings that 
arise outside the program’s code;
– e.g., from user input.



35

Moving away from String

• Our collection of String objects for music tracks is 
limited.

• No separate identification of artist, title, etc.
• A Track class with separate fields:

– artist

– title

– filename


