Grouping objects

Introduction to collections — Part 2



Grouping objects

Collections and the for-each loop




Main concepts to be covered

 Collections
» Loops: the for-each loop
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lteration

« We often want to perform some actions an arbitrary
number of times.

- E.g., print all the file names in the organizer. How many are
there?

* Most programming languages include loop statements to
make this possible.

« Java has several sorts of loop statement.
- We will start with its for-each loop.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling 4




Ilteration fundamentals

- We often want to repeat some actions over and
over.

« Loops provide us with a way to control how many
times we repeat those actions.

« With collections, we often want to repeat things
once for every object in a particular collection.
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For-each loop pseudo code

[General form of the for-each loop]

for keyword ]
[ oxr Keywor [loop headerw

\ / s )

for (ElementType element : collectioa) {
g loop body

}
\{Statement(s) to be I’epeated]

[ Pseudo-code expression of the actions }

of a for-each loop

i

For each element in collection, do the things in the loop body.
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A Java example

/**
* List all file names in the organizer.
*/

public void listAllFiles()

{

for (String filename : files) ({
System.out.println(filename) ;

}

[for each filename in files, print out filename]
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Review

« Loop statements allow a block of
statements to be repeated.

« The for-each loop allows iteration over a
whole collection.
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Selective processing

« Statements can be nested, giving greater
selectivity:

public void findFiles (String searchString)
{
for (String filename : files) {
if (filename.contains (searchString)) {
System.out.println(filename) ;

}




Critique of for-each

Easy to write.
Termination happens naturally.
The collection cannot be changed.

There is no index provided.
- Not all collections are index-based.

We can’ t stop part way through;
- e.g. find-the-first-that-matches.

It provides ‘definite iteration’ - aka ‘bounded iteration’.
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Grouping objects

Indefinite iteration - the while loop




Main concepts to be covered

 The difference between definite
and indefinite (unbounded)
iteration.

« The while loop
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Search tasks are indefinite

« We cannot predict, in advance, how many places
we will have to look.

« Although, there may well be an absolute limit -
i.e., checking every possible location.

 ‘Infinite loops’ are also possible.
- Through error or the nature of the task.
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The while loop

A for-each loop repeats the loop body for each
object in a collection.

Sometimes we require more variation than this.

We use a boolean condition to decide whether or
not to keep going.

A while loop provides this control.
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While loop pseudo code

[ General form of a while loop ]

[ while keyword ] ( 1
\ [ pootearn test ]
while (loop cgndition) {
g loop body <—[Statements to be repeated]

}

Pseudo-code expression of the actions of
a while loop

while we wish to continue, do the things in the loop body
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Looking for your keys

while (the keys are missing) {

look in the next place;

Or:

while (not (the keys have been found)) {

look in the next place;
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Looking for your keys

boolean searching = true;
while (searching) ({
if (they are in the next place) {

searching = false;

[ Suppose we don’ t find them? }
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A Java example

AL
* List all file names in the organizer.
*/

public void listAllFiles()

{

int index = 0;

while(index < files.size()) {
String filename = files.get (index) ;
System.out.println(filename) ;

index++;
} } \[ Increment index by 1 ]

[while the value of index is less than the size of the collection, }

get and print the next file name, and then increment index
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Elements of the loop

We have declared an index variable.

The condition must be expressed correctly.

We have to fetch each element.

The index variable must be incremented explicitly.
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for-each versus while

 for-each:
- easier to write.
- safer: it is guaranteed to stop.

« while:
- we don’t have to process the whole collection.
- doesn’t even have to be used with a collection.
- take care: could be an infinite loop.
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Searching a collection

A fundamental activity.
Applicable beyond collections.
Necessarily indefinite.

We must code for both success and failure -
exhausted search.

Both must make the loop’ s condition false.
The collection might be empty.
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Finishing a search

« How do we finish a search?

e Either there are no more items to check:
index >= files.size()

e Or the item has been found:
found == true
found
! searching
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Continuing a search

« With a while loop we need to state the condition
for continuing:

 So the loop’ s condition will be the opposite of that
for finishing:
index < files.size() && ! found
index < files.size() && searching

« NB: ‘or’ becomes ‘and’ when inverting everything.
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Searching a collection

int index = 0;

boolean found = false;

while(index < files.size() && !'found) {
String file = files.get (index) ;
if (file.contains (searchString)) ({

// We don't need to keep looking.
found = true;

}

else {
index++;

}
}
// Either we found it at index,
// or we searched the whole collection.
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Indefinite iteration

« Does the search still work if the collection is
empty?

 Yes! The loop’ s body won’ t be entered in that
case.

« Important feature of while:
- The body will be executed zero or more times.
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While without a collection

// Print all even numbers from 2 to 30.
int index = 2;
while (index <= 30) {
System.out.println (index) ;
index = index + 2;
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The String class

 The String class is defined in the java.lang
package.
|t has some special features that need a little care.

 |n particular, comparison of String objects can
oe tricky.
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Side note: String equality

if (input == "bye") { L tests identity J
}
if (input.equals ("bye")) { [ tests equality ]
}

Always use .equals for text equality.
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ldentity vs equality 1

Other (non-String) objects:

“Fred” “Jill”
/ /
J J
personl person2
personl == person2 ?
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ldentity vs equality 2

Other (non-String) objects:

“Fred” “Fred”
/ /
J J
personl person2
personl == person2 ?
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|ldentity vs equality 3

Other (non-String) objects:

“Fred” “Fred”

/

J ~e
personl person2
personl == person2 ?
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|ldentity vs equality (Strings)

String input = reader.getInput();
if (input == "bye") { [ == tests identity ]

}

1
1
~

"bye" llbye"

/

J

input

- (may be) false!
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|ldentity vs equality (Strings)

String input = reader.getInput();

if (input.equals ("bye")) { equals tests
equality
}
equals ?
"bye" "bye"

/

J
input > true!
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The problem with Strings

« The compiler merges identical String literals in
the program code.

- The result is reference equality for apparently distinct
String objects.

« But this cannot be done for identical strings that
arise outside the program’s code;

- e.g., from user input.
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Moving away from String

« Our collection of String objects for music tracks is
limited.

* No separate identification of artist, title, etc.

« A Track class with separate fields:
—artist
—title

— filename
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