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Main concepts to be covered

• Collections
• Loops: the for-each loop
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Iteration

• We often want to perform some actions an arbitrary 
number of times.
– E.g., print all the file names in the organizer. How many are 

there?

• Most programming languages include loop statements to 
make this possible.

• Java has several sorts of loop statement.
– We will start with its for-each loop.
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Iteration fundamentals

• We often want to repeat some actions over and 
over.

• Loops provide us with a way to control how many 
times we repeat those actions.

• With collections, we often want to repeat things 
once for every object in a particular collection.
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For-each loop pseudo code
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for(ElementType element : collection) {
loop body

} 

For each element in collection, do the things in the loop body.

loop header
for keyword

Statement(s) to be repeated

Pseudo-code expression of the actions 
of a for-each loop

General form of the for-each loop
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A Java example
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/**
* List all file names in the organizer.
*/
public void listAllFiles()
{

for(String filename : files) {
System.out.println(filename);

}
} 

for each filename in files, print out filename
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Review

• Loop statements allow a block of 
statements to be repeated.

• The for-each loop allows iteration over a 
whole collection.
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Selective processing

• Statements can be nested, giving greater 
selectivity:

public void findFiles(String searchString)
{

for(String filename : files) {
if(filename.contains(searchString)) {

System.out.println(filename);
}

}
} 
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Critique of for-each

• Easy to write.
• Termination happens naturally.
• The collection cannot be changed.
• There is no index provided.

– Not all collections are index-based.

• We can’t stop part way through;
– e.g. find-the-first-that-matches.

• It provides ‘definite iteration’ – aka ‘bounded iteration’.
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Indefinite iteration - the while loop
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Main concepts to be covered

• The difference between definite 
and indefinite (unbounded) 
iteration.

• The while loop
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Search tasks are indefinite

• We cannot predict, in advance, how many places 
we will have to look.

• Although, there may well be an absolute limit –
i.e., checking every possible location.

• ‘Infinite loops’ are also possible.
– Through error or the nature of the task.
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The while loop

• A for-each loop repeats the loop body for each 
object in a collection.

• Sometimes we require more variation than this.
• We use a boolean condition to decide whether or 

not to keep going.
• A while loop provides this control.
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While loop pseudo code
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while(loop condition) {
loop body

} 

while we wish to continue, do the things in the loop body

boolean test
while keyword

Statements to be repeated

Pseudo-code expression of the actions of 
a while loop

General form of a while loop
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Looking for your keys

while(the keys are missing) {

look in the next place;

}

Or:

while(not (the keys have been found)) {

look in the next place;

}
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Looking for your keys

boolean searching = true;

while(searching) {

if(they are in the next place) {

searching = false;

}

}

Suppose we don’t find them?
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A Java example
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/**
* List all file names in the organizer.
*/
public void listAllFiles()
{

int index = 0;
while(index < files.size()) {

String filename = files.get(index);
System.out.println(filename);
index++;

}
} 

Increment index by 1

while the value of index is less than the size of the collection, 
get and print the next file name, and then increment index
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Elements of the loop

• We have declared an index variable.
• The condition must be expressed correctly.
• We have to fetch each element.
• The index variable must be incremented explicitly.
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for-each versus while

• for-each:
– easier to write.
– safer: it is guaranteed to stop.

• while:
– we don’t have to process the whole collection. 
– doesn’t even have to be used with a collection.
– take care: could be an infinite loop.
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Searching a collection

• A fundamental activity.
• Applicable beyond collections.
• Necessarily indefinite.
• We must code for both success and failure –

exhausted search.
• Both must make the loop’s condition false.
• The collection might be empty.
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Finishing a search

• How do we finish a search?
• Either there are no more items to check:
index >= files.size()

• Or the item has been found:
found == true
found
! searching
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Continuing a search

• With a while loop we need to state the condition 
for continuing:

• So the loop’s condition will be the opposite of that 
for finishing:
index < files.size() && ! found
index < files.size() && searching

• NB: ‘or’ becomes ‘and’ when inverting everything.
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Searching a collection
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int index = 0;
boolean found = false;
while(index < files.size() && !found) {

String file = files.get(index);
if(file.contains(searchString)) {

// We don't need to keep looking.
found = true;

}
else {

index++;
}

}
// Either we found it at index, 
// or we searched the whole collection.
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Indefinite iteration

• Does the search still work if the collection is 
empty?

• Yes! The loop’s body won’t be entered in that 
case.

• Important feature of while:
– The body will be executed zero or more times.
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While without a collection
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// Print all even numbers from 2 to 30.
int index = 2;
while(index <= 30) {

System.out.println(index);
index = index + 2;

}
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The String class

• The String class is defined in the java.lang
package.

• It has some special features that need a little care.
• In particular, comparison of String objects can 

be tricky.



28

Side note: String equality

if(input == "bye") {

...

}

if(input.equals("bye")) {

...

}

Always use .equals for text equality.
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tests identity

tests equality
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Identity vs equality 1
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Other (non-String) objects:

person1 == person2 ?

“Fred”

:Person

person1 person2

“Jill”

:Person
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Identity vs equality 2
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Other (non-String) objects:

person1 == person2 ?

“Fred”

:Person

person1 person2

“Fred”

:Person
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Identity vs equality 3
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Other (non-String) objects:

person1 == person2 ?

“Fred”

:Person

person1 person2

“Fred”

:Person
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Identity vs equality (Strings)
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"bye"

:String

input

"bye"

:String

String input = reader.getInput();

if(input == "bye") {

...

}

== ?

 (may be) false!

== tests identity



33

Identity vs equality (Strings)
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"bye"

:String

input

"bye"

:String

String input = reader.getInput();

if(input.equals("bye")) {

...

}

equals ?

 true!

equals tests 
equality
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The problem with Strings

• The compiler merges identical String literals in 
the program code.
– The result is reference equality for apparently distinct 
String objects.

• But this cannot be done for identical strings that 
arise outside the program’s code;
– e.g., from user input.
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Moving away from String

• Our collection of String objects for music tracks is 
limited.

• No separate identification of artist, title, etc.
• A Track class with separate fields:

– artist

– title

– filename


