Grouping objects

Introduction to collections — Part 2

Grouping objects

Collections and the for-each loop

Main concepts to be covered

 Collections
» Loops: the for-each loop

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling 3

lteration

« We often want to perform some actions an arbitrary
number of times.

- E.g., print all the file names in the organizer. How many are
there?

* Most programming languages include loop statements to
make this possible.

« Java has several sorts of loop statement.
- We will start with its for-each loop.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling 4

Ilteration fundamentals

- We often want to repeat some actions over and
over.

« Loops provide us with a way to control how many
times we repeat those actions.

« With collections, we often want to repeat things
once for every object in a particular collection.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling 5

For-each loop pseudo code

[General form of the for-each loop]

for keyword]
[oxr Keywor [loop headerw

\ / s)

for (ElementType element : collectioa) {
g loop body

}
\{Statement(s) to be I’epeated]

[Pseudo-code expression of the actions }

of a for-each loop

i

For each element in collection, do the things in the loop body.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling 6

A Java example

/**
* List all file names in the organizer.
*/

public void listAllFiles()

{

for (String filename : files) ({
System.out.println(filename) ;

}

[for each filename in files, print out filename]

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling 7

Review

« Loop statements allow a block of
statements to be repeated.

« The for-each loop allows iteration over a
whole collection.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling

Selective processing

« Statements can be nested, giving greater
selectivity:

public void findFiles (String searchString)
{
for (String filename : files) {
if (filename.contains (searchString)) {
System.out.println(filename) ;

}

Critique of for-each

Easy to write.
Termination happens naturally.
The collection cannot be changed.

There is no index provided.
- Not all collections are index-based.

We can’ t stop part way through;
- e.g. find-the-first-that-matches.

It provides ‘definite iteration’ - aka ‘bounded iteration’.

10

Grouping objects

Indefinite iteration - the while loop

Main concepts to be covered

 The difference between definite
and indefinite (unbounded)
iteration.

« The while loop

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling 12

Search tasks are indefinite

« We cannot predict, in advance, how many places
we will have to look.

« Although, there may well be an absolute limit -
i.e., checking every possible location.

 ‘Infinite loops’ are also possible.
- Through error or the nature of the task.

13

The while loop

A for-each loop repeats the loop body for each
object in a collection.

Sometimes we require more variation than this.

We use a boolean condition to decide whether or
not to keep going.

A while loop provides this control.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling 14

While loop pseudo code

[General form of a while loop]

[while keyword] (1
\ [pootearn test]
while (loop cgndition) {
g loop body <—[Statements to be repeated]

}

Pseudo-code expression of the actions of
a while loop

while we wish to continue, do the things in the loop body

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling 15

Looking for your keys

while (the keys are missing) {

look in the next place;

Or:

while (not (the keys have been found)) {

look in the next place;

16

Looking for your keys

boolean searching = true;
while (searching) ({
if (they are in the next place) {

searching = false;

[Suppose we don’ t find them? }

17

A Java example

AL
* List all file names in the organizer.
*/

public void listAllFiles()

{

int index = 0;

while(index < files.size()) {
String filename = files.get (index) ;
System.out.println(filename) ;

index++;
} } \[Increment index by 1]

[while the value of index is less than the size of the collection, }

get and print the next file name, and then increment index

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling 18

Elements of the loop

We have declared an index variable.

The condition must be expressed correctly.

We have to fetch each element.

The index variable must be incremented explicitly.

19

for-each versus while

 for-each:
- easier to write.
- safer: it is guaranteed to stop.

« while:
- we don’t have to process the whole collection.
- doesn’t even have to be used with a collection.
- take care: could be an infinite loop.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling 20

Searching a collection

A fundamental activity.
Applicable beyond collections.
Necessarily indefinite.

We must code for both success and failure -
exhausted search.

Both must make the loop’ s condition false.
The collection might be empty.

21

Finishing a search

« How do we finish a search?

e Either there are no more items to check:
index >= files.size()

e Or the item has been found:
found == true
found
! searching

22

Continuing a search

« With a while loop we need to state the condition
for continuing:

 So the loop’ s condition will be the opposite of that
for finishing:
index < files.size() && ! found
index < files.size() && searching

« NB: ‘or’ becomes ‘and’ when inverting everything.

23

Searching a collection

int index = 0;

boolean found = false;

while(index < files.size() && !'found) {
String file = files.get (index) ;
if (file.contains (searchString)) ({

// We don't need to keep looking.
found = true;

}

else {
index++;

}
}
// Either we found it at index,
// or we searched the whole collection.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling

24

Indefinite iteration

« Does the search still work if the collection is
empty?

 Yes! The loop’ s body won’ t be entered in that
case.

« Important feature of while:
- The body will be executed zero or more times.

25

While without a collection

// Print all even numbers from 2 to 30.
int index = 2;
while (index <= 30) {
System.out.println (index) ;
index = index + 2;

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling 26

The String class

 The String class is defined in the java.lang
package.
|t has some special features that need a little care.

 |n particular, comparison of String objects can
oe tricky.

27

Side note: String equality

if (input == "bye") { L tests identity J
}
if (input.equals ("bye")) { [tests equality]
}

Always use .equals for text equality.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling 28

ldentity vs equality 1

Other (non-String) objects:

“Fred” “Jill”
/ /
J J
personl person2
personl == person2 ?

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling 29

ldentity vs equality 2

Other (non-String) objects:

“Fred” “Fred”
/ /
J J
personl person2
personl == person2 ?

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling 30

|ldentity vs equality 3

Other (non-String) objects:

“Fred” “Fred”

/

J ~e
personl person2
personl == person2 ?

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling 31

|ldentity vs equality (Strings)

String input = reader.getInput();
if (input == "bye") { [== tests identity]

}

1
1
~

"bye" llbye"

/

J

input

- (may be) false!

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling 32

|ldentity vs equality (Strings)

String input = reader.getInput();

if (input.equals ("bye")) { equals tests
equality
}
equals ?
"bye" "bye"

/

J
input > true!

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kélling 33

The problem with Strings

« The compiler merges identical String literals in
the program code.

- The result is reference equality for apparently distinct
String objects.

« But this cannot be done for identical strings that
arise outside the program’s code;

- e.g., from user input.

34

Moving away from String

« Our collection of String objects for music tracks is
limited.

* No separate identification of artist, title, etc.

« A Track class with separate fields:
—artist
—title

— filename

35

