Data modelling \&
Normalization

Learning outcomes

- Understand the database development process
- First step to drawing E-R diagrams for common business situations
- Realize how detailed analysis will produce accurate representations of the database structure
- Continuing with Normalization and affirming your understanding of the process.

What is a database?

- Represents some aspect of the real world
- A logically coherent collection of data
- A database is designed, built and populated with data for a specific purpose
- The purpose is aimed to meet the requirements of the user of the database

What is a database?

An employee works for enterprise

The purpose is aimed to meet the requirements of the user(s) of the database

Database

represents some aspect of the real
world

Enterprise

Organisation for
which the database is designed

Types of database

Client-server database Hypertext database

Distributed database
Database-as-a-Service
Data Warehouses

Key-value pair database
Colum family store database

Document database

Graph database

Example
Oracle, Microsoft SQL Server, Filemaker Pro, Amazon Aurora, PostgreSQL, MySQL, Relational MariaDB

DynamoDB, Raik, Redis, Aerospike, Azure Table Storage

HBase, Cassandra, MonetDB, IBM Informix, Apache Flink, Google Cloudata

MongoDB, CouchDB, Azure Document DB, JSON ODM

Neo4J, ArangoDB, Trinity, AllegroGraph, Bigdata

Where does the purpose of the database come from?

A record with a purpose

The need to record... goes back centuries

Sumerian clay tablets \& Cave paintings The need to record data goes back through prehistory (bronze and iron age)

Computerized databases 1960s: two popular data models in this decade: a network model called CODASYL and a hierarchical model called IMS.
The SABRE system was used by IBM to help
American Airlines manage its reservations data.

Where does the purpose of the database come from?

- The processes taking place in the environment: to record the outcomes
- Triggers in the environment that instigates

A record with a purpose needing to record data: decisions being made

- A requirement to group coherent data together: produce an output
- Because the data needs to be shared by more than one individual: external views

Scenario: Need a database

- Imagine you run a fast food restaurant
- You want to automate the food ordering process

Everyone been to a fast food restaurant?
Can you describe food ordering process?

Scenario: McDonald needs a database

You are Richard McDonald and you run a hamburger and fast food restaurant.
Every day customers come in to the restaurant to order food.
You employ a number of servers.
The servers welcome the customer and take the food order and payment.
When ready the customer receives their order

From this description can you model the database?

Scenario: McDonald needs a database

Does this inform us about the structure of the database?

NO: Because it is not a true representation of the database structure

One customer places an order

Customer	Order
Bob	 Fries
Fred	 Fries
Aryan	Milkshake

bucks
new university

Database development process

Observation: McDonald needs a database

- The customer informs the server of their order
- The server records the order
- Takes a payment
- The server sends the order to the kitchen
- When order ready the server gives the order to the customer

Understanding of the processes that are taking place: McDonald needs a database

bucks
new university

Requirements of the users: McDonald needs a database

Background functions we need
Forefront functions of our design

Customers

- Place food order
- Pays for food order
- Eats food order

- Accept order
- Expedite order
- Receive Payment
- Quality control
to be aware of

Kitchen

- Accept the order
- Make the order elements
- Quality control

Understand database inputs \& outputs: McDonald needs a database

Can you visualise what the data looks like in the database?

Data gathering: McDonald needs a database

 rName de mber ryDate onDate

R	17181	98656949		
Hussain	9	1874	01/01/18	06/10/17
		63395577		
D Tan	$\begin{gathered} 26272 \\ 8 \end{gathered}$	9874	01/08/20	07/10/17
		10002333		
S Sam	$\begin{gathered} 29303 \\ 1 \end{gathered}$	1597	01/05/19	07/10/17

1
01/05/1907/10/17

Order
Numb Orderltems
er
BM Big Mac
LF Large Fries
39
LM Large Chocolate Milkshake

MC Mcflurry
CLC Chicken Legend with
Cool Mayo
56
LF Large Fries
LCD Large Cold Drink
SEB Sausage, Egg and Cheese
44 Bagel
LC Large Cappuccino
CS5 Chicken Selects 5 Pieces
69 LF Large Fries
LCD Large Cold Drink

OrderPr			TakeOut	erver	erver	ServerN
ice		lerMealD eal	Total	umber	Inital	ame
£2.99						
£1.39	$\begin{gathered} £ 7.2 \\ 6 \end{gathered}$	Big Mac Meal Deal	£6.26	\#1001	JB	Jack Black
£1.89 £0.99						
£3.59		Chicken				
£1.39	7	Deal	£5.	\#1002	TH	Hunt
£1.29						
£2.29	$\begin{gathered} £ 4.1 \\ 8 \end{gathered}$	Breakfast BagalDea	£3.18	\#1001	JB	Jack Black
£1.89						
£4.19		Chicken				
£1.39	£6.8 7	Select	£5.87	\#1002	TH	Tom

CustomerN ame	$\begin{array}{\|c\|} \hline \text { SortCo } \\ \text { de } \end{array}$	AcountNu mber	$\begin{array}{\|c\|} \hline \text { CardExpiryD } \\ \text { ate } \end{array}$	$\begin{array}{\|c} \text { Transactio } \\ \text { nDate } \\ \hline \end{array}$	OrderN umber	Orderltems	OrderPri ce	Total	OrderSaverM ealDeal	$\left\lvert\, \begin{gathered} \text { TakeOutT } \\ \text { otal } \end{gathered}\right.$	ServerNu mber		me
B Smith	123456	$\begin{array}{\|c} 51491234 \\ 5678 \\ \hline \end{array}$	12/12/21	05/10/17	39	BM Big Mac	£2.99	£7.26	Big Mac Meal Deal	£6.26	\#1001	JB	Jack Black
B Smith	123456	$\begin{array}{\|c} 51491234 \\ 5678 \\ \hline \end{array}$	12/12/21	05/10/17	39	LF Large Fries	£1.39	£7.26	Big Mac Meal Deal	£6.26	\#1001	JB	Jack Black
B Smith	123456	$\begin{array}{\|c\|c\|} 51491234 \\ 5678 \end{array}$	12/12/21	05/10/17	39	LM Large Chocolate Milkshake	£1.89	£7.26	Big Mac Meal Deal	£6.26	\#1001	JB	Jack Black
B Smith	123456	$\begin{gathered} 51491234 \\ 5678 \\ \hline \end{gathered}$	12/12/21	05/10/17	39	MC Mcflurry	£0.99	£7.26	Big Mac Meal Deal	£6.26	\#1001	JB	Jack Black
R Hussain	171819	$\begin{gathered} 98656949 \\ 1874 \\ \hline \end{gathered}$	01/01/18	06/10/17	56	CLC Chicken Legend with Cool Mayo	£3.59	£6.27	Chicken Legend Meal	£5.27	\#1002	TH	Tom Hunt
R Hussain	171819	$\begin{gathered} 98656949 \\ 1874 \\ \hline \end{gathered}$	01/01/18	06/10/17	56	LF Large Fries	£1.39	£6.27	Chicken Legend Meal	£5.27	\#1002	TH	Tom Hunt
R Hussain	171819	$\begin{gathered} \hline 98656949 \\ 1874 \end{gathered}$	01/01/18	06/10/17	56	LCD Large Cold Drink	£1.29	£6.27	Chicken Legend Meal	£5.27	\#1002	TH	Tom Hunt
D Tan	262728	$\begin{array}{\|c} 63395577 \\ 9874 \\ \hline \end{array}$	01/08/20	07/10/17	44	SEB Sausage, Egg and Cheese Bagel	£2.29	£4.18	BreakfastBaga IDeal	£3.18	\#1001	JB	Jack Black
D Tan	262728	$\begin{gathered} 63395577 \\ 9874 \\ \hline \end{gathered}$	01/08/20	07/10/17	44	LC Large Cappuccino	£1.89	£4.18	BreakfastBaga IDeal	£3.18	\#1001	JB	Jack Black
S Sam	293031	$\begin{array}{\|c} 10002333 \\ 1597 \\ \hline \end{array}$	01/05/19	07/10/17	69	CS5 Chicken Selects 5 Pieces	£4.19	£6.87	Chicken Select Deal	$£ 5.87$	\#1002	TH	Tom Hunt
S Sam	293031	$\begin{array}{\|c} 10002333 \\ 1597 \\ \hline \end{array}$	01/05/19	07/10/17	69	LF Large Fries	£1.39	£6.87	Chicken Select Deal	$£ 5.87$	\#1002	TH	Tom Hunt
S Sam	293031	$\begin{array}{\|c} 10002333 \\ 1597 \end{array}$	01/05/19	07/10/17	69	LCD Large Cold Drink	£1.29	£6.87	Chicken Select Deal	£5.87	\#1002	TH	Tom Hunt

CustomerN ame	$\begin{gathered} \text { SortCo } \\ \text { de } \end{gathered}$	AcountNu mber	$\begin{array}{\|c\|} \hline \text { CardExpiryD } \\ \text { ate } \\ \hline \end{array}$	$\begin{gathered} \text { Transactio } \\ \text { nDate } \\ \hline \end{gathered}$	OrderN umber	Orderltems	$\begin{gathered} \text { OrderPri } \\ \text { ce } \end{gathered}$	Total	OrderSaverM ealDeal	TakeOutT otal	ServerNu mber		me
B Smith	123456	$\begin{gathered} 51491234 \\ 5678 \\ \hline \end{gathered}$	12/12/21	05/10/17	39	BM Big Mac	£2.99	£7.26	Big Mac Meal Deal	£6.26	\#1001	JB	Jack Black
B Smith	123456	$\begin{gathered} 51491234 \\ 5678 \\ \hline \end{gathered}$	12/12/21	05/10/17	39	LF Large Fries	£1.39	£7.26	Big Mac Meal Deal	£6.26	\#1001	JB	Jack Black
B Smith	123456	$\begin{array}{\|c} \hline 51491234 \\ 5678 \\ \hline \end{array}$	12/12/21	05/10/17	39	LM Large Chocolate Milkshake	£1.89	£7.26	Big Mac Meal Deal	£6.26	\#1001	JB	Jack Black
B Smith	123456	$\begin{array}{\|c} \hline 51491234 \\ 5678 \\ \hline \end{array}$	12/12/21	05/10/17	39	MC Mcflurry	£0.99	£7.26	Big Mac Meal Deal	£6.26	\#1001	JB	Jack Black
R Hussain	171819	$\begin{gathered} 98656949 \\ 1874 \\ \hline \end{gathered}$	01/01/18	06/10/17	56	CLC Chicken Legend with Cool Mayo	£3.59	£6.27	Chicken Legend Meal	£5.27	\#1002	TH	Tom Hunt
R Hussain	171819	$\begin{gathered} 98656949 \\ 1874 \\ \hline \end{gathered}$	01/01/18	06/10/17	56	LF Large Fries	£1.39	£6.27	Chicken Legend Meal	£5.27	\#1002	TH	Tom Hunt
R Hussain	171819	$\begin{gathered} 98656949 \\ 1874 \\ \hline \end{gathered}$	01/01/18	06/10/17	56	LCD Large Cold Drink	£1.29	£6.27	Chicken Legend Meal	£5.27	\#1002	TH	Tom Hunt
D Tan	262728	$\begin{gathered} 63395577 \\ 9874 \\ \hline \end{gathered}$	01/08/20	07/10/17	44	SEB Sausage, Egg and Cheese Bagel	£2.29	£4.18	BreakfastBaga IDeal	£3.18	\#1001	JB	Jack Black
D Tan	262728	$\begin{gathered} 63395577 \\ 9874 \\ \hline \end{gathered}$	01/08/20	07/10/17	44	LC Large Cappuccino	£1.89	£4.18	BreakfastBaga Deal	£3.18	\#1001	JB	Jack Black
S Sam	293031	$\begin{gathered} 10002333 \\ 1597 \\ \hline \end{gathered}$	01/05/19	07/10/17	69	CS5 Chicken Selects 5 Pieces	£4.19	£6.87	Chicken Select Deal	£5.87	\#1002	TH	Tom Hunt
S Sam	293031	$\begin{array}{\|c} 10002333 \\ 1597 \\ \hline \end{array}$	01/05/19	07/10/17	69	LF Large Fries	£1.39	£6.87	Chicken Select Deal	£5.87	\#1002	TH	Tom Hunt
S Sam	293031	$\begin{gathered} 10002333 \\ 1597 \\ \hline \end{gathered}$	01/05/19	07/10/17	69	LCD Large Cold Drink	£1.29	£6.87	Chicken Select Deal	£5.87	\#1002	TH	Tom Hunt

Transaction

CustomerNa me	SortCode	AcountNumber (PK)	CardExpiryD ate	TransactionD ate	OrderNumber (FK)	TakeOut T otal
B Smith	123456	514912345678	12/12/21	05/10/17	39	£6.26
R Hussain	171819	986569491874	01/01/18	06/10/17	56	£5.27
D Tan	262728	633955779874	01/08/20	07/10/17	44	£3.18
S Sam	293031	100023331597	01/05/19	07/10/17	69	£5.87

For this example no further normalizing needed to model the database structure

McDonald needs a database: First steps conceptual model

- Transaction is a record of the payment for a food order
- An order is a record of the items of food requested by a customer
- The server is the person that processes the food order and transaction

Transaction

- Entities represent real objects in the mini-world

Entities represent real objects

Understanding entity association

- Entities are linked by their relationship/association
- The links denote the interaction between the entities
- We define the relationship type

which represents payment

Understanding entity association

Understanding entity association

A transaction is a record of payment for a food order

One customer places an order

Which model better represents our database structure?

Transaction
Record Order

Expedites

Server

Understanding constraints

- Two types of constraints: participation and cardinality
- To identify restrictions or constraints on relationship so that there is consideration or an extension to the real world - how it is actually in real life
- The cardinality of a binary relationship is the number of entity instances to which another entity instance can map under that relationship

Understanding constraints: Cardinality

- 1:1: A relationship R from entity X to entity Y, each instance in X is associated with at most one entity instance of Y

Understanding constraints: Cardinality

- 1:m: A relationship R from entity X to entity Y, each instance in X is associated with many instances of Y

Understanding constraints (cardinality)

bucks
new university

Transaction							
CustomerName	SortCode	AcountNumber (PK)	CardExpiryDate	TransactionDate	OrderNumber	TakeOutTotal	
B Smith	123456	514912345678	$12 / 12 / 21$	$05 / 10 / 17$	39	$£ 6.26$	
R Hussain	171819	986569491874	$01 / 01 / 18$	$06 / 10 / 17$	56	$£ 5.27$	
D Tan	262728	633955779874	$01 / 08 / 20$	$0 / 10 / 17$	44	$£ 3.18$	
S Sam	293031	100023331597	$01 / 05 / 19$	$07 / 10 / 17$	69	$£ 5.87$	

Order						
Order Number	Orderltems	OrderPrice	Total	OrderSaverMealDeal	TakeOutTotal	ServerNumber
39	Big Mac	£2.99	7.26	Big Mac Meal Deal	£6.26	\#1001
	Large Fries	£1.39				
	Large Chocolate Milkshake	£1.89				
	Mcflurry	£0.99				
56	Chicken Legend with Cool Mayo	£3.59	6.27	Chicken Legend Deal	$£ 5.27$	\#1002
	Large Fries	£1.39				
	Large Cold Drink	£1.29				
44	Sausage, Egg and Cheese Bagel	£2.29	4.18	BreakfastBagalDeal	£3.18	\#1001
	Large Cappuccino	£1.89				
69	Chicken Selects 5 Pieces	£4.19	6.87	Chicken Select Deal	$£ 5.87$	\#1002
	Large Fries	£1.39				
	Large Cold Drink	£1.29				

Proving constraints (cardinality)

Representing binary relationships (cardinality) bucks

Transaction	1	Order	Server

Understanding constraints (cardinality)

Proving constraints (cardinality)

Representing binary relationships (cardinality) bucks

Transaction	$\mathbf{1}$	$\mathbf{1}$	Order	\mathbf{M}

Representing entity association \& Representing binary relationships (cardinality)

- Transaction is a record of the payment for a food order
- An order is a record of the items of food requested by a customer
- The server is the person that processes the food order and transaction

1: 1 For every order there can only be one transaction payment and therefore one transaction can only correspond to one payment.

Normalization

- Continuing with Normalization and affirming your understanding of the process.

Normalization steps

1NF	2NF	3NF
1) Each cell in the table contains one value.	1) If the relation is in first normal form (1NF)	1) If the relation is in second normal form (2NF)
2) Each attribute has a unique name - the column names are unique	2) If all non-key attributes are fully dependent on the primary key	2) If all associations where all non-key attributes are not dependent on any other non- key attributes are resolved
3) Each Table/Relation has a primary key (PK) which uniquely identifies each row/tuple in the relation.	3) If each relation has a primary key	3) If each relation has a primary key

Questions One: Can you convert the following table to 1NF?

Student Number	StudentName	Address	Module Details
210458897	Bob Jones	31 New Street, High Wycombe, Buckinghamshire HP12 7CV	CO560 Databases CO550 Web Development CO555 Research Methods CO565 Mobile Technology

new university

Question Two: Can you convert the following table to 2NF?

CNO (PK)	C569	C258
Title	Ms	Mr
Initials	L	M
SName	Page	Book
Street	High Street	New Street
City	High Wycombe	High Wycombe
PCode	HP55 9PQ	HP56 7KL
CreditLimit	£5000.00	£10000.00
AccBal	£3500.00	£5500.00
InvNo	C569TYHR	C258RFGB
InvDate	$21 / 06 / 2015$	$03 / 01 / 2015$
InvAmount	£1500.00	$£ 2300.00$

bucks
new university

Question Three: Can you convert the following table to 3NF?

ProdN o (PK)	ProDesc rp	ProdPric e	QTYinSto ck	SuppN 0	SuppNa me	$\begin{aligned} & \text { Stree } \\ & \mathrm{t} \end{aligned}$	City	PCod e
PO123	Widget	£5.00	5	W564	Widget Ltd	High Stree t	Croydon	$\begin{aligned} & \text { CO12 } \\ & \text { 8GH } \end{aligned}$
PO582	Bolts	£10.00	1000	B789	Bolts Ltd	Steel Stree t	London	$\begin{aligned} & \text { SW1 } \\ & 9 \mathrm{KJ} \end{aligned}$
P0895	Widget	£5.00	15	W564	Widget Ltd	High Stree t	Croydon	$\begin{aligned} & \text { CO12 } \\ & \text { 8GH } \end{aligned}$

bucks
new university

