
Transaction management

What is a transaction?
• ACID properties of transactions.

The need for concurrency control
• Lost Update problem
• Uncommitted update
• Inconsistent analysis

Serializability
• Locking (deadlock & tow-phase locking)

Recovery
• Deferred updates
• Checkpoints

• Demonstrate understanding of transactions and the properties of

transactions

• Understand the principles of simultaneous processing

• Be able to identify the problems with concurrency control

• Be able to identify the problems with serializabilty and the

techniques to manage

• Describe problems and facilities for data recovery

Learning Outcomes

What is a Transaction?

“An operation that is occurring on the database”.

What’s a transaction?
• Logical unit of work/program/single command operations occurring within the

database.
• A single SQL command.
• A single transaction can involve a number of operations being performs on the

database.
BEGIN TRANSACTION

COMMIT

ROLLBACK
ABORT

END TRANSACTION

INSERT
UPDATE
SELECT

SELECT DISTINCT saledate
FROM avon_sales
ORDER BY saledate;

What’s a transaction?

Student
records

database

Operation: update the number of credits for student 216987123 to 30 credits

1. Record is located

2. Page is bought to buffer

3. The credits are rewritten for the record

4. Write modified to disk record

Transaction steps

!A transaction must bring the database from one consistent state to another.

Transaction rules

• At the end of the transaction all occurrences in the database must agree.

• A transaction is the entire series of steps necessary to accomplish a logical unit of work.

• The transaction must bring the database from and to a new consistent state.

• While the transaction is in mid-operation the database can be in an inconsistent state.

• A transaction is an atomic process: a single all or none unit.

• Partial executions are not permitted as this leaves the database in an inconsistent state.

• If a transaction was committed and this was an error a compensating transaction can be

run to reverse the effects.

• A transaction that has executed successfully is said to be committed.

• If a transaction cannot complete successfully the transaction is aborted.

Begin
transaction

Active Transaction

Partially committed

Failed

A
b

o
rt

Committed

Aborted

End

1. There are two ways in which a transaction can end – committed or aborted.

2. If a transaction cannot commit is must be aborted to return the database back to a consistent state.

3. Once a transaction is committed it cannot be aborted.

4. If a transaction has been committed and it was a mistake a compensating transaction must be performed to
reverse the effects.

5. A rolled back transaction can be re-run and could execute and commit successfully.
Ricardo&Urban (2017) p396

ACID properties of transactions

BEGIN TRANSACTION 1

ROLLBACK
ABORT

COMMIT

END TRANSACTION

Atomic

Consistent

Consistent

BEGIN TRANSACTION 2

ROLLBACK
ABORT

COMMIT

END TRANSACTION

Isolation

Durability
Permanent write to DB

Users do not know this is
happening and

transactions do not
interfere with each other

ACID properties of transactions

Atomicity: all or none unit. Either the entire set of database update operations are carried
out or none. To ensure this the DBMS maintains a log, so transactions can be rolled back.

Consistency: ensure consistency of multiple transactions when they execute at the same
(concurrency subsystem part of DBMS).

Isolation: several transactions executing at the same time, with interleaving operations.
Changes made to one transaction is not seen by another transaction until it has
committed. This gives the effect that one transaction is being executed after another
(concurrency control subsystem part of DBMS).

Durability: once a transaction is committed that the changes are permanent in the
database even if the database crashes before all the writes have been initiated (recovery
subsystem part of DBMS).

Concurrency control

“The ability to manage simultaneous processes involving the database”

Need for concurrency control

• Without care a database can be easily damaged – concurrency control can help avoid
this situation.

• Concurrency control – managing the simultaneous processes that are occurring
(serializability).

• Users access the data simultaneously.

• Control transactions so they don’t interfere with one another

Concurrency control is needed to avoid loss of information or corruption of
the database.

Concurrency control

• In a multi-user environment, simultaneous access to data can result in
interference and data loss where transactions conflict

• Concurrency Control - the process of managing simultaneous
transactions

• Problems caused by concurrency:
• lost update problem,
• uncommitted update and
• inconsistent analysis.

Lost update problem

John Transaction Time Marsha Transaction

BEGIN TRANSACTION T1

Read BAL (£1000) T2 BEGIN TRANSACTION

T3 Read BAL (£1000)

DEBIT (£200) (Balance = £800) T4

WRITE balance (£800) T5

COMMIT T6

T7 CREDIT (£100) (Balance = £1100)

T8 …

T9 WRITE balance (£1100)

T10 COMMIT

• Each transaction is
unaware of the other
transaction and the
changes

• Each transaction reads
the balance and uses
this for the calculation.

• Marsha’s transaction
overwrites Jacks
update to the account
balance by withdrawal
of £200.

• According to the
schedule John’s
transaction is lost.

The final balance should be £900

TIME Jack’s Transaction Jill’s Transaction Account Balance

T1 BEGIN TRANSACTION

T2 Read BAL (£1000) £1000

T3 BEGIN TRANSACTION

T4 Read BAL (£1000) £1000

T5 BAL = BAL-£50 (£950) £950

T6 BAL = BAL+100 (£1100)

T7 WRITE BAL (£950) £950

T8 COMMIT

T9 WRITE BAL (£1100) £1100

T10 COMMIT £1100

• Can you describe the problem with the transaction?
• Can you calculate the correct balance of the account?

Lost update problem

1. The balance at start of schedule is £1000.

2. The Time column shows the time at which the transaction operation is taking place, and because transactions are

interleaved we can see that Jack’s transaction and Jill’s transaction are being handled simultaneously.

3. The transaction for Jack commences at time T1 with the BEGIN TRANSACTION.

4. Jack’s transaction reads the balance correctly as £1000

5. However at time T3 Jill’s transaction begins and also reads the account balance as £1000, at this point not commit

has occurred for Jacks transaction - so the state is still consistent and correct.

6. At T5 Jack’s transaction debits the account with £50 but this transaction does not commit at this point in time.

7. At T6 Jill’s transaction interleaves and credits the account with £100

8. At T7 Jack’s transaction writes the balance of £950 after the £10 withdrawal.

9. At T8 Jack’s transaction COMMITS

10. At T9 and T10 Jill’s transaction WRITE’s the balance and COMMITS and overwrites Jack’s transaction amount with

£1100.

11. This is called lost update because Jacks transaction is lost, the correct balance should be £1050 after both

transactions have completed Jack (1000 – 50 = £950) and Jill’s (950 + 100 = £1050).

Lost update problem

Uncommitted update explained

• This issue occurs when the first transaction is permitted to modify a value,
which is read by a second transaction, and the first transaction does not
commit but rolls backs. The data that the second transaction is using is
invalidated. Also called dirty read problem.

TIME Transaction 1 Transaction 2 BALANCE

t1 Read BAL (£5000) £5000

T2 Debit £500 (5000-500 =£4500) £5000

T3 Write BAL £4500 £4500

T4 Read BAL (£4500) £4500

T5 Credit £1000 (4500+1000= £5500) £4500

T6 Write BAL (£5500) £5500

T7 COMMIT £5500

T8 ROLLBACK

Time DEPOSIT INTEREST BALANCE

T1 BEGIN TRANSACTION £1000

T2 READ BAL (£1000) £1000

T3 BAL = BAL + 1000 £1000

T4 WRITE BAL (£2000) £2000

T5 BEGIN TRANSACTION

T6 READ BAL (£2000)

T7 BAL = BAL * 1.01 £2000

T8 ROLLBACK £1000

T9 WRITE BAL (£2020) £2020

T10 COMMIT £2020

• Can you describe the problem with the transaction?
• Can you calculate the correct balance of the account?

Uncommitted update

1. The starting balance for the account is £1000 at T1

2. At T2 balance is read £1000

3. At T3 balance is credited with £1000 and at T4 the balance is written £2000. Note: Transactions can

only be rolled back if the transaction has not been committed.

4. At T6 the second transaction reads the balance £2000 and at T7 the interest is calculated on £2000

balance and the balance written.

5. However at T8 the credit is rolled back. The interest transaction committed an interest amount

which was calculated and applied to the credited account balance. Therefore the interest applied on

the account is incorrect.

6. The correct interest applied on £1000 balance is £1010.10.

Uncommitted update

Inconsistent analysis problem
• This occurs when the first transaction reads a number of values,

but a second transaction updates a number of the values before
the first transaction has a chance to commit.

Mcfadden, Hoffer and Prescott (2000) p507

Concurrency control

Other problem which arise with concurrency control are:

• Non repeatable read problem

• Phantom data problem

For wider reading look at these problems in your own time.

Serializability

“Serial execution of transactions means transactions
are performing one after the another without

interleaving operations”.

Serializability
• Serial execution are when transactions are executed one after the other.

• There is no interleaving of operations.

• For two transactions A and B, the possibility of serial execution is A followed

by B or B followed by A.

• For some transactions the order of the execution is important.

• With serial execution it is assumed that the database is left in a consistent

state and correct. Even if the order of the transaction produced different

results.

• If a set of transactions is executed concurrently it is called serializable.

Serializability

Transaction 1 Transaction 2 Data Conflict Order

Reading data Reading data Same No conflict order not important

Reading data Reading data Different No conflict order not important

Writing data Reading data Different No conflict order not important

Writing data Reading data Same Conflict order is important

• Is it essential to guarantee serializability of concurrent transactions in order to ensure
correctness.

Tranasction1
BEGIN TRANSACTION
READ BALANCE
BALANCE = BALANCE + £50000)
WRITE BALANCE
COMMIT
END TRANSACTION

The starting balance is £50000. For the following two
transactions what will be the balance on the account if the
transactions are run serially Transaction 1 followed by
Transaction 2?

Serializability

Transaction2
BEGIN TRANSACTION
READ BALANCE
BALANCE= BALANCE + INTEREST (2.5%)
WRITE BALANCE
COMMIT
END TRANSACTION

T1
BEGIN TRANSACTION
READ BALANCE 50000
BALANCE = BALANCE + £50000) 50000 + 50000 =100000
WRITE BALANCE 100000
COMMIT COMMIT 100000
END TRANSACTION

T2
BEGIN TRANSACTION
READ BALANCE 100000
BALANCE= BALANCE + INTEREST (2.5%) 100000 + (100000 /100 * 2.5 = 2500) = 102500
WRITE BALANCE 102500
COMMIT COMMIT 102500
END TRANSACTION

Serializability

Tranasction1
BEGIN TRANSACTION
READ BALANCE
BALANCE = BALANCE + £50000)
WRITE BALANCE
COMMIT
END TRANSACTION

The starting balance is £50000. For the following two transactions
what will be the balance on the account if the transactions are run
serially Transaction 2 followed by Transaction 1?

Serializability

Transaction2
BEGIN TRANSACTION
READ BALANCE
BALANCE= BALANCE + INTEREST (2.5%)
WRITE BALANCE
COMMIT
END TRANSACTION

T2
BEGIN TRANSACTION
READ BALANCE 50000
BALANCE= BALANCE + INTEREST (2.5%) 50000 + (50000 /100 * 2.5 =) = 51250
WRITE BALANCE 51250
COMMIT COMMIT 51250
END TRANSACTION

T1
BEGIN TRANSACTION
READ BALANCE 51250
BALANCE = BALANCE + £50000) 51250 + 50000 = 101250
WRITE BALANCE 101250
COMMIT COMMIT 101250
END TRANSACTION

Serializability

Locking

• Locking ensures serializability by allowing a transaction to lock an object

to prevent another transaction from accessing or modifying it.

• Objects from the entire database to single data items can be locked.

• Locking: by flag on the data item or keeping a list.

• Two types of lock shared and exclusive.

• A transaction must acquire a lock on any item it needs to read or write.

Types of locks: shared lock

BEGIN TRANSACTION 1

s-lock at time T1

READ BALANCE
:
:
:
:
RELEASE S-LOCK
COMMIT
END TRANSACTION

BEGIN TRANSACTION 2

READ BALANCE
:
:
:
:
RELEASE S-LOCK
COMMIT
END TRANSACTION

s-lock at time T3
e-lock denied

• Read access a shared lock can be acquired

• S-lock allows
transactions to read, but
not to update. Placing a
s-lock will prevent
another operation from
placing an e-lock on the
data.

Types of locks – exclusive lock

BEGIN TRANSACTION 1

e-lock at time T1

READ BALANCE
:
:
:
:
RELEASE S-LOCK
COMMIT
END TRANSACTION

BEGIN TRANSACTION 2

READ BALANCE
:
:
:
:
RELEASE S-LOCK
COMMIT
END TRANSACTION

s-lock – DENIED
e-lock - DENIED

• For write access a exclusive lock needs to be acquired.

• e-lock prevent another
transaction from reading
the data until the write
operation is complete.

Problem with locking: deadlock
• When two or more transactions have locked common resources, and each is

waiting for the other to unlock their resources

TIME Transaction 5 Transaction 6

T1 REQUEST e-lock (A)

T2 GRANT e-lock (A)

T3 REQUEST e-lock (B)

T4 GRANT e-lock (B)

T5 GRANT e-lock (B) REQUEST e-lock (A)

T6 Waiting Waiting

T7 Waiting Waiting

T8 Waiting Waiting

T9 … ….

FIGURE 9.9 P408 Ricardo and Urban 2017

Managing Deadlock

• Deadlock prevention:
• Deadlock detection - lock all records required at the beginning of a

transaction

• May be difficult to determine all needed resources in advance

• Deadlock detection and recovery:
• Allow deadlocks to occur

• Mechanisms for detecting and breaking them

• Need graphing to show transactions waiting for resources

Two-phase locking

• Two phases growing (acquiring locks) and shrinking (releasing locks).

• There is no requirement for all the locks to be acquired at the start.

• Normally some locks acquired, then processing occurs and then further locks

acquired.

• Locks are not released until it has reached a stage where no new locks are

needed.

Recovery

“The process of restoring the database to correct state in the
event of failure”.

Database failures

• Natural disaster: fire flood, earthquake and power outage.

• Sabotage: intentional contamination, destruction or data.

• Unintentional: deletion and overwriting data.

• Hardware malfunction: disk failure

• System crashes: loss of cache memory

• Software errors: abnormal termination and update effects.

Database recovery

• Mechanism for restoring transactions quickly and accurately after loss or
damage.

• Ensuring atomicity and durability of transactions.

• Recovery facilities:

• Backup

• Deferred update protocol

• Checkpoints

• Immediate Update Protocol

• Mirrored disks

• Recovery manager

Back-ups

• A DBMS copy utility that produces backup copy of the

entire database or subset

• Periodical backups (e.g. nightly, weekly and incremental)

• Cold backup–database is shut down during backup

• Backups stored in secure and off-site location

Checkpoints

•Periodically force writing modified pages from buffer
to disk

•Writing all logs from memory to disk

•A checkpoint record for rollback

References

• Modern database management (2000) McFadden, Hoffer and Prescott

• Databases illuminated (2017) Ricardo and Urban

