
CO550 – Web Applications

UNIT 3 – DATA MODELLING

What is Data Modelling?

• Process of creating logical representation of structure of things or
events in real world

• Could be argued that it’s most important task in software
development

• Real-world structures and relationships can be described
diagrammatically

• In web applications different techniques used e.g. Entity Relationship
diagrams or Unified Modelling Language

What is a Database?

Customers

Employees

Orders

Entities
(Tables in the Database)

Record
(a Table row)

also called a Tuple

Attributes
(Table columns)
also called fields

Entity-Relationship Model

• E-R diagram /model First described by Chen P. (1976)
• Shows relationship between entities in a database
• “In software engineering, an entity–relationship model (ER model) is

a data model for describing the data or information aspects of a
business domain or its process requirements, in an abstract way that
lends itself to ultimately being implemented in a database such as a
relational database. The main components of ER models are entities
(things) and the relationships that can exist among them, and
databases” Wikipedia

What are Entities?

• Anything you are “tracking”
• A discrete object or item about which you are storing information

Customers
StudentsStock

What is an Attribute?

• Attributes describe the characteristics of an entity
• Can be described in shorthand:

Employee (EmployeeID, Name, Department, HireDate)

Attributes
inside bracketEntity

Name
Primary Key
underlined

Customer
• CustomerID
• Name
• BirthDate
• Email
• PhoneNo

• 12345
• Ajax
• 12/01/1980
• ajax@gmail
• 0145 3536

• 36373
• Alesia
• 03/07/1982
• alesia@gmail
• 0345 2655

Entities & Attributes

Attributes

Entity Relationships (ER)

• A database may have many entities
– e.g. a hospital database may have entities such as Staff, Patients, Doctors,

Wards, etc.

• It is also very important to know how these entities interact with or
relate to one another

• There will be relationships that link the various entities together
– e.g. Patients will be linked to a particular ward

• During database development the various entities will form Tables
and the relationships will be used to link them

ER Notation
• One to One

• An employee has one car and a car belongs to only one employee

• One to Many
• A Hall of Residence has many students but a student lives in only one

hall

• Many to Many

• A student may go to many clubs and a club can have many students

Employee Car

Hall Student

Student Club

ER Diagrams including attributes

• In this case we have also included the attributes

StudentID

YearStart

FullName

HallID

NumberOfRooms

Location

HALL STUDENT

A More Complete ER Diagram

N:M LESSONStudent N:1 ROOM

1:N

TEACHER

• In this example, there are 4 entities
• There are 2 one-many and 1 many-many relationships
• The attributes have not been shown

Identifiers & Primary Keys

• An identifier is an attribute that names or identifies an entity
– Often this is a number e.g....
– CustomerNo, StudentNo, EmployeeNo, StockCode, etc.

• If this is always unique, it can be the Primary Key for the entity
– the primary key facilitates fast searching and linking of tables in the database

• Microsoft Naming Convention is to use ID even if the attribute is a
number. Strings can be used but are harder to manage.

Foreign Keys

• A Foreign Key is the Primary Key of one entity that is stored again as
an attribute of another entity

• The Foreign key serves as a link between the two entities

CustomerID FullName Address

OrderID OrderDate CustomerID

Customer

Order
foreign key

Sheet1

		CustomerID		FullName		Address

Sheet1

		OrderID		OrderDate		CustomerID

Conversion into Tables

•From the E-R diagram we create tables with
correct attributes and linkages:

CustomerID Name Address
2234 Bloggs Computers 2 Spon St, Watford
2235 Sissy Systems 3 Foo Lane, Marlow
2236 Black Box Ltd. 12 Laff Rd, Wycombe
2237 Reject Bros 8 Rot Row, Marlow

Customer

OrderID OrderDate CustomerID
99934 12/03/00 2235
99935 12/03/00 2237
99936 13/03/00 2235
99937 13/03/00 2237

Order
1-many relationship

between
Customer and Order

Entities

		CustomerID

		Name

		Address

		2234

		Bloggs Computers

		2 Spon St, Watford

		2235

		Sissy Systems

		3 Foo Lane, Marlow

		2236

		Black Box Ltd.

		12 Laff Rd, Wycombe

		2237

		Reject Bros

		8 Rot Row, Marlow

		OrderID

		OrderDate

		CustomerID

		99934

		12/03/00

		2235

		99935

		12/03/00

		2237

		99936

		13/03/00

		2235

		99937

		13/03/00

		2237

UML Class Models

• Class models are used to document the static structure of
the system e.g. what the entities are and how they are
related (not how they interact to achieve particular
behaviours)

• Classes represent enduring objects in the real world
• A rectangle is used as a class icon (which can show

Analysis, Implementation details or have the details
suppressed)

• For CO550 CW1 we are really only concerned with ‘entity’
classes

Class Attributes and Operations

• A class has properties and methods.
• Properties are public data contained in a class with a getter and setter.
• Operations (i.e., methods) define the way classes interact

(by sending messages).
• During OOA, focus more on attributes.

Example:

Book

public String Author {get; set;}
public String Title {get; set;}
public void Return(int copyNo);
public void Borrow(int copyNo);

properties

methods

class name

Java Equivalent

Book

private string author;
private string title

public void return(int copyNo);
public int borrow();

public string getAuthor();
public void setAuthor(string author);

public string getTitle();
public void setTitle(string title);

attributes

methods

class name

Identifying Classes - Nouns

Two stages

• Identify candidate classes by picking all the nouns and
phrases out of a requirements specification.

• Discard candidates which are inappropriate for any
reason, renaming the remaining classes if necessary.

Class Model Case Study: Library System -
Requirements

• Scenario: develop computer system for a university library that handles
bookkeeping and user browsing.

• Books and journals
• Library contains books and journals.
• May have several copies of a book.

• Users
• Students
• Librarians

• Borrowing
• Must keep track of when books and journals are borrowed and returned.
• System should produce reminders when a book is overdue.

• Browsing
• User can search for a book by subject, author, title, etc.
• User can reserve book.

Class Model Case Study: Library System –
Noun identification

• Typical examples of classes (tangible or real-world things)
• book, copy, journal, author
• roles: library member, student, librarians, tutors

• Inappropriate examples
• library (outside system scope)
• short term loan (an event)
• member of library (redundant, same as library member)
• week (measures time, not a thing)
• item (vague)
• time (outside system scope)
• system (meta-language)

Class Model Case Study: Library System - Noun
Identification

• Nouns that are retained (first cut list of probable classes):

• Book
• Journal
• Copy (of book)
• Student
• Staff

Class Model Case Study: Library System -
Associations

• Associations express the relationship between classes
• In general, classes correspond to nouns, associations

correspond to verbs.
• Just as there are instances of classes (objects) there are

instances of associations (links in UML)
• For example:
• ‘a library member borrows a book’
• ‘an account generates a statement’
• ‘a customer orders a product’
• ‘a lecturer teaches a student’

Class Model Case Study: Library System
Relations/Associations between Classes

• We can identify the relations or associations between classes in a
number of ways…

• Class A and class B are associated if:
• a class A object sends a message to a class B object,
• a class A object creates a class B object,
• a class A object has a class B object as a component (composition),
• a class A object receives a message with a class B object as an argument,

• In other words, we attempt to model the interaction between two (or
more) classes.

Case Study: Library System Class Model -
Multiplicities

• It would also be useful to model the cardinality of the relationship
between classes

• Multiplicities represent this
• They tell us number of objects of one class that relate to a single

object of an associated class
• It is possible to specify:

• an exact number
• a range of numbers
• an arbitrary, unspecified number

Class Model Case Study: Library System –
Multiplicities

Example associations:
• is a copy of
• borrows/returns

Multiplicities
• 1 one
• 0..1 0 or 1
• 0..* 0 or many
• 1..* 1 or many

SUMMARY

• Reviewed Data Modelling and its purpose

• Entities, Attributes, and Relationships

• ER Diagrams and Class Models

NOW: Assignment Workshop

• Review project ideas in teams
• Start identifying your entities

Next UNIT
First step of ASP.NET Core Razor Pages tutorial

https://docs.microsoft.com/en-us/aspnet/core/data/ef-
rp/intro?view=aspnetcore-2.1&tabs=visual-studio

https://docs.microsoft.com/en-us/aspnet/core/data/ef-rp/intro?view=aspnetcore-2.1&tabs=visual-studio

	Slide Number 1
	What is Data Modelling?
	What is a Database?
	Entity-Relationship Model
	What are Entities?
	What is an Attribute?
	Entities & Attributes
	Entity Relationships (ER)
	 ER Notation
	ER Diagrams including attributes
	A More Complete ER Diagram
	Identifiers & Primary Keys
	Foreign Keys
	Conversion into Tables
	UML Class Models
	Class Attributes and Operations
	Java Equivalent
	Identifying Classes - Nouns
	Class Model Case Study: Library System - Requirements�
	Class Model Case Study: Library System – Noun identification
	Class Model Case Study: Library System - Noun Identification
	Class Model Case Study: Library System - Associations
	Class Model Case Study: Library System � Relations/Associations between Classes
	Case Study: Library System Class Model - Multiplicities
	Class Model Case Study: Library System – Multiplicities
	SUMMARY
	NOW: Assignment Workshop

