) bucks

(0550 — WEB APPLICATIONS

ASPNET CORE TEGHNICAL "HOW T0" GUIDE




BUILDING AN ASPNET CORE WEB APP

For this module, the Web Apps CW2 assignment requires you to
complete at least some coding within ASP.NET.

This presentation outlines the fundamental functions and features you
are expected to be able to implement. These have been divided into
the following sections:

* Fundamentals (ideally I'd like to see you achieving all of these)

* Advanced (some more advanced techniques you can try to improve
your grade)

The guidance on this presentation assumes you are tackling a Razor

Pages project (not MVC)
O bucks



THE FUNDAMENTALS

&) bucks



FUNDAMENTALS

1. Code First Model Creation - C# classes in a “Models”
folder

2. Scaffolding Your Model - for CRUD functionality

3. Database Migrations — to manage database creation and
changes

4. Data Annotations —on your Models, for implementing
validation, for example

5. Seeding Data

O bucks



1. CODE FIRST MODEL GREATION

Refer to the “Get Started” section of the Microsoft Razor Pages
tutorial: https://docs.microsoft.com/en-us/aspnet/core/data/ef-
rp/intro?view=aspnetcore-2.2&tabs=visual-studio

Create your models as classes. Example below:

=

using System;
using System.Collections.Generic;

namespace ContosoUniversity.Models

{
public class Student
i
public int ID { get; set; }
public string LastMame { get; set; }
public string FirstMidName { get; set; }
public DateTime EnrollmentDate { get; set; }
ublic ICollection<Enrcllment> Enrollments et; set; A b k
} p {¢g } ‘ UC S
: new university



2. SCAFFOLDING YOUR MODEL

Again, refer to the “Get Started” section of the Microsoft Razor
Pages tutorial: https://docs.microsoft.com/en-
us/aspnet/core/data/ef-rp/intro?view=aspnetcore-2.2&tabs=visual-
studio#tscaffold-the-student-model

Your aim: to generate the CRUD pages (Create, Read, Update,
Delete) within the “Pages” folder of your Razor Pages project

) bucks



3. DATABASE MIGRATIONS

For detailed information, refer to the relevant section on the Microsoft tutorial:
https://docs.microsoft.com/en-us/aspnet/core/data/ef-
rp/migrations?view=aspnetcore-2.2&tabs=visual-studio

The underlying principles, though, are fairly simple:

Database Migrations are effectively version control for your database

Whenever you make a change to any of your models, you need to do two things:
1. Add a Migration (“Add-Migration <MigrationName>"” command)
2. Update the database (“Update-Database” command)

You run the above commands in the “Package Manager Console” in Visual Studio

If you get a “database cannot be opened” error when trying to run your web
app, you likely need to run “Update-Database” to create the database.

Each migration file is stored in the “Migrations” folder and is a basic C# class with

an Up() method and a Down() method
O bucks,



4. DATA ANNOTATIONS

» Use data annotations to make your models more comprehensive
and useful.

* You can use data annotations to specify the front-end label for an
attribute, whether it is a required field or not, other validation and
formatting rules, etc...

e Data annotations are included in square brackets and you must
include the relevant “using” statements at the top of the class:
using System.ComponentModel.DataAnnotations;

using System.ComponentModel.DataAnnotations.Schema;

Reference: https://docs.microsoft.com/en-us/aspnet/core/data/ef-
rp/complex-data-model?view=aspnetcore-2.2&tabs=visual-studio

) bucks,




4. DATA ANNOTATIONS

Example Data Annotations...

namespace ContosoUniversity.Models

{
public class Student
{
public int ID { get; set; }
[Required]
[StringlLength(50) ]

[Display(Name = "Last Name")]

public string LastName { get; set; }

[Required]

[StringlLength(50, ErrorMessage = "First name cannot be longer than 50 characters.")]
[Column("FirstName") ]

[Display(Name = "First Name")]

public string FirstMidName { get; set; }

[DataType(DataType.Date)]

[DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode = true)]
[Display(Name = "Enrollment Date")]

public DateTime EnrollmentDate { get; set; }



0. SEEDING DATA

“Seeding data” refers to the process of prepopulating the database
with data hard-coded into the project code (a “database
initialiser”).

The purpose of this: prepopulate your database with some sample
records to demonstrate how your application will function with
data. Leaving your database empty will not help in testing the
functionality.

See final part of “Getting Started” part of Microsoft tutorial:
https://docs.microsoft.com/en-us/aspnet/core/data/ef-
rp/intro?view=aspnetcore-2.2&tabs=visual-studiot#fadd-code-to-

initialize-the-db-with-test-data
) bucks




0. SEEDING DATA

namespace ContosoUniversity.Models

{

public static class DbInitializer

{

public static void Initialize(SchoolContext context)

{

// context.Database.EnsureCreated();

// Look for any students.
if (context.Student.Any())

{

var

new
new
new
new
new
new
new
new

return; // DB has been seeded

students = new Student[]

Student{FirstMidName="Carson",LastName="Alexander",EnrollmentDate=DateTime.Parse¢
Student{FirstMidName="Meredith",LastName="Alonso",EnrollmentDate=DateTime.Parse|
Student{FirstMidName="Arturo”,LastName="Anand",EnrollmentDate=DateTime.Parse("2¢
Student{FirstMidName="Gytis",LastName="Barzdukas"”,EnrollmentDate=DateTime.Parse|
Student{FirstMidName="Yan",LastName="Li",EnrollmentDate=DateTime.Parse("2002-09-
Student{FirstMidName="Peggy",LastName="Justice",EnrollmentDate=DateTime.Parse(":
Student{FirstMidName="Laura",LastName="Norman",EnrollmentDate=DateTime.Parse("2¢
Student{FirstMidName="Nino",LastName="0livetto",EnrollmentDate=DateTime.Parse(":



ADVANCED FUNCTIONALITY

&) bucks



ADVANCED FEATURES AND FUNCTIONALITY

If you achieve the fundamentals, move on to trying to
implement some of these...

1. Displaying Related Data

N

Customised Login and Registration — using ASP.NET
ldentity

Sorting, Filtering, Paging
Saving / Updating Related Data
Uploading Files or Images

o v bk w

Sending emails

0 bucks



1. DISPLAYING RELATED DATA

* An example: we may wish to display a Student’s enrollments on
their Details page. A student has (or is linked to) multiple
enrollments.

* We need to build a query which fetches this related data and
makes it available to the page we are working on.

See “Add related data” part of section 2 (of 8) of the Microsoft
tutorial: https://docs.microsoft.com/en-us/aspnet/core/data/ef-
rp/crud?view=aspnetcore-2.2#add-related-data

Also see the “Read Related Data” section (6 of 8) of the Microsoft
tutorial for a more advanced implementation:
https://docs.microsoft.com/en-us/aspnet/core/data/ef-rp/read-
related-data?view=aspnetcore-2.2&tabs=visual-studio




1. DISPLAYING RELATED DATA - EXAMPLE

Option 1: on the OnGetAsync() method of a page, we can
customize the underlying data query to pull in related data:

Student = await _context.Student
.Include(s => s.Enrollments)
.ThenInclude(e => e.Course)
.AsNoTracking()
.FirstOrDefaultAsync(m => m.ID == id);

) bucks,



1. DISPLAYING RELATED DATA - EXAMPLE

Option 2: on the OnGetAsync() method of a page, we can build a completely
separate LINQ query and assign the results to an IEnumerable object:

S context.PurchaseOrderLines
s.DeliveryID == id

lerLines> purchaseOrderLinesIQ =

3,

PurchaseOrder.POLines = purchaseOrderLinesIQ;

e Notice the LINQ syntax to build the query

* Note that “id” has been passed in via a URL parameter on the page (?id=10 for
example)

t> OnGetAsync( ? 1d)

* You can then use a foreach loop in the Razor Page to loop over the data held in

the “POLines” property, in this example c b
) ucks



2. GUSTOMISED LOGIN AND REGISTRATION

» Refer to Unit 10 materials on Blackboard and the working code also supplied on

GitHub:
https://github.com/iamjonjackson/IdentityCustomisationTest/releases/tag/0.1.0

(use this as the basis of your project)

* You can also add ldentity to an existing project but it requires some extra
changes to get it working effectively in the same database context

D Unit 10 - Customising Identity Tutorial (handout)

.+ Working Code (on GitHub)
() Workne

E] Customising Identity Tutorial Recording (on YouTube)

) bucks




3. SORTING, FILTERING, PAGING

» Refer to this section of the Microsoft Tutorial: https://docs.microsoft.com/en-
us/aspnet/core/data/ef-rp/sort-filter-page?view=aspnetcore-2.2

Back to Full List

Find by name:
Last Name FirstName Enroliment Date /
Alexander Carson 9/1/2005 12:00:00 AM  Edit | Details | Delete
Alonso Meredith 9/1/2002 12:00:00 AM  Edit | Details | Delete
Anand Arturo 9/1/2003 12:00:00 AM  Edit | Details | Delete

&) bucks




4. SAVING / UPDATING RELATED DATA

See the “Update Related Data” section (7 of 8) of the Microsoft
tutorial: https://docs.microsoft.com/en-us/aspnet/core/data/ef-
rp/update-related-data?view=aspnetcore-2.2

) bucks



0. UPLOADING FILES OR IMAGES

Tutorials

e https://docs.microsoft.co
m/en-
us/aspnet/core/razor-
pages/upload-
files?view=aspnetcore-2.1

* https://www.learnrazorpa

ges.com/razor-
pages/forms/file-upload

Video Walkthrough:
see Unit 10 on
Blackboard for the
recorded YouTube
demos which cover
this.

Tutorial: Uploading Files and Embedding Images in a page

A two-part tutorial for showing how to create a basic model and then upload an image file and store
integrate a third party JS library to give us 360-view functionality for a 360-degree image.

Part 1

Part 2

@B _ASPNET Razor P

Detads




b. SENDING EMAILS

Your system may have a requirement for sending email notifications
when some user action is carried out. Some examples:

e Confirmation of a new booking having been made
e Confirmation of a new game tournament having been entered

* An email alert to the admin user when stock levels of a product
are running low

https://www.youtube.com/watch?v=E5SNMd8MO004&index=9&Ilist=PLDmvslp VR
0x2CmMC6Cc4AZhZfYX7G2nBlo

Introduction to ASPNET Core 2 |
o o8 Adding A Nuget Package | Part 10 |

Watch videos 10-13 of this YouTube BEW Eduonix Learning Solutions

Introduction to ASPNET Core 2 |
F 4 Wt Creating Backend Mail Send Workflow |

email from your web app via Gmail YN Eduonix Learning Solutions

series for a full walkthrough to send

Introduction to ASPNET Core 2 |
TEAd Creating HTML Form With Tag Helpers

N/ nseNer tone 2
oLl Fduonix Learning Solutions

Introduction to ASPNET Core 2 |
4 W Contact Form Submission | Part 13 |
i = i Ediianiv | aarninAa Calirtiane




ANDREMEMBER.




DOCUMENT YOUR CODING

* Remember to explain and showcase your coding efforts
in your technical report, part of your CW2 submission.

* Make it easy for the marker to see the types of
functionality you have implemented, how you’ve done
it, and whether or not you understand it!

* Don’t be afraid to go into detail

* Include screenshots of your code where applicable (but
make sure they are readable)!




