
CO550 – Web Applications

ASP.NET Core Technical “How To” Guide



Building an ASP.NET Core Web App

For this module, the Web Apps CW2 assignment requires you to 
complete at least some coding within ASP.NET.

This presentation outlines the fundamental functions and features you 
are expected to be able to implement. These have been divided into 
the following sections:

• Fundamentals (ideally I’d like to see you achieving all of these)
• Advanced (some more advanced techniques you can try to improve 

your grade)

The guidance on this presentation assumes you are tackling a Razor 
Pages project (not MVC)



The Fundamentals



Fundamentals

1. Code First Model Creation - C# classes in a “Models” 
folder

2. Scaffolding Your Model - for CRUD functionality
3. Database Migrations – to manage database creation and 

changes
4. Data Annotations – on your Models, for implementing 

validation, for example
5. Seeding Data 



1. Code First Model Creation

Refer to the “Get Started” section of the Microsoft Razor Pages 
tutorial: https://docs.microsoft.com/en-us/aspnet/core/data/ef-
rp/intro?view=aspnetcore-2.2&tabs=visual-studio

Create your models as classes. Example below:



2. Scaffolding Your Model 

Again, refer to the “Get Started” section of the Microsoft Razor 
Pages tutorial: https://docs.microsoft.com/en-
us/aspnet/core/data/ef-rp/intro?view=aspnetcore-2.2&tabs=visual-
studio#scaffold-the-student-model

Your aim: to generate the CRUD pages (Create, Read, Update, 
Delete) within the “Pages” folder of your Razor Pages project



3. Database Migrations 
For detailed information, refer to the relevant section on the Microsoft tutorial: 
https://docs.microsoft.com/en-us/aspnet/core/data/ef-
rp/migrations?view=aspnetcore-2.2&tabs=visual-studio

The underlying principles, though, are fairly simple:

• Database Migrations are effectively version control for your database

• Whenever you make a change to any of your models, you need to do two things:
1. Add a Migration (“Add-Migration <MigrationName>” command)
2. Update the database (“Update-Database” command)

• You run the above commands in the “Package Manager Console” in Visual Studio

• If you get a “database cannot be opened” error when trying to run your web 
app, you likely need to run “Update-Database” to create the database.

• Each migration file is stored in the “Migrations” folder and is a basic C# class with 
an Up() method and a Down() method



4. Data Annotations

• Use data annotations to make your models more comprehensive 
and useful. 

• You can use data annotations to specify the front-end label for an 
attribute, whether it is a required field or not, other validation and 
formatting rules, etc…

• Data annotations are included in square brackets and you must 
include the relevant “using” statements at the top of the class: 

using System.ComponentModel.DataAnnotations; 
using System.ComponentModel.DataAnnotations.Schema;

Reference: https://docs.microsoft.com/en-us/aspnet/core/data/ef-
rp/complex-data-model?view=aspnetcore-2.2&tabs=visual-studio



4. Data Annotations

Example Data Annotations…



5. Seeding Data

“Seeding data” refers to the process of prepopulating the database 
with data hard-coded into the project code (a “database 
initialiser”).

The purpose of this: prepopulate your database with some sample 
records to demonstrate how your application will function with 
data. Leaving your database empty will not help in testing the 
functionality.

See final part of “Getting Started” part of Microsoft tutorial: 
https://docs.microsoft.com/en-us/aspnet/core/data/ef-
rp/intro?view=aspnetcore-2.2&tabs=visual-studio#add-code-to-
initialize-the-db-with-test-data



5. Seeding Data



Advanced Functionality



Advanced Features and Functionality

If you achieve the fundamentals, move on to trying to 
implement some of these…

1. Displaying Related Data 
2. Customised Login and Registration – using ASP.NET 

Identity
3. Sorting, Filtering, Paging
4. Saving / Updating Related Data
5. Uploading Files or Images
6. Sending emails



1. Displaying Related Data

• An example: we may wish to display a Student’s enrollments on 
their Details page. A student has (or is linked to) multiple 
enrollments.

• We need to build a query which fetches this related data and 
makes it available to the page we are working on.

See “Add related data” part of section 2 (of 8) of the Microsoft 
tutorial: https://docs.microsoft.com/en-us/aspnet/core/data/ef-
rp/crud?view=aspnetcore-2.2#add-related-data

Also see the “Read Related Data” section (6 of 8) of the Microsoft 
tutorial for a more advanced implementation: 
https://docs.microsoft.com/en-us/aspnet/core/data/ef-rp/read-
related-data?view=aspnetcore-2.2&tabs=visual-studio



1. Displaying Related Data - Example

Option 1: on the OnGetAsync() method of a page, we can 
customize the underlying data query to pull in related data:



1. Displaying Related Data - Example
Option 2: on the OnGetAsync() method of a page, we can build a completely 
separate LINQ query and assign the results to an IEnumerable object:

• Notice the LINQ syntax to build the query

• Note that “id” has been passed in via a URL parameter on the page (?id=10 for 
example)

• You can then use a foreach loop in the Razor Page to loop over the data held in 
the “POLines” property, in this example



2. Customised Login and Registration
• Refer to Unit 10 materials on Blackboard and the working code also supplied on 

GitHub: 
https://github.com/iamjonjackson/IdentityCustomisationTest/releases/tag/0.1.0
(use this as the basis of your project)

• You can also add Identity to an existing project but it requires some extra 
changes to get it working effectively in the same database context



3. Sorting, Filtering, Paging
• Refer to this section of the Microsoft Tutorial: https://docs.microsoft.com/en-

us/aspnet/core/data/ef-rp/sort-filter-page?view=aspnetcore-2.2



4. Saving / Updating Related Data

See the “Update Related Data” section (7 of 8) of the Microsoft 
tutorial: https://docs.microsoft.com/en-us/aspnet/core/data/ef-
rp/update-related-data?view=aspnetcore-2.2



5. Uploading Files or Images
Tutorials
• https://docs.microsoft.co

m/en-
us/aspnet/core/razor-
pages/upload-
files?view=aspnetcore-2.1

• https://www.learnrazorpa
ges.com/razor-
pages/forms/file-upload

Video Walkthrough: 
see Unit 10 on 
Blackboard for the 
recorded YouTube 
demos which cover 
this.



6. Sending emails
Your system may have a requirement for sending email notifications 
when some user action is carried out. Some examples:
• Confirmation of a new booking having been made
• Confirmation of a new game tournament having been entered
• An email alert to the admin user when stock levels of a product 

are running low

https://www.youtube.com/watch?v=E5SNMd8MO04&index=9&list=PLDmvslp_VR
0x2CmC6c4AZhZfYX7G2nBIo

Watch videos 10-13 of this YouTube 
series for a full walkthrough to send
email from your web app via Gmail



And remember…



Document your Coding
• Remember to explain and showcase your coding efforts 

in your technical report, part of your CW2 submission.
• Make it easy for the marker to see the types of 

functionality you have implemented, how you’ve done 
it, and whether or not you understand it!

• Don’t be afraid to go into detail
• Include screenshots of your code where applicable (but 

make sure they are readable)!


