) bucks

(0550 — WEB APPLICATIONS

UNIT 11— WIDER CONTEXT OF WEB APPLICATIONS,
PROGRESSIVE WEB APPS, SEQ, AND UX

WIDER CONTEXT OF WEB APPLICATIONS

* Progressive Web Apps (PWAs) and Single Page Applications
(SPAs)

» SEO Considerations
e UX (User Experience)

0 bucks

WHAT ARE PROGRESSIVE WEB APPS?

Google’s definition...

Progressive Web Apps are user experiences that have the reach of the
web, and are:

* Reliable - Load instantly and never show the downasaur, even in
uncertain network conditions.

* Fast - Respond quickly to user interactions with silky smooth
animations and no janky scrolling.

* Engaging - Feel like a natural app on the device, with an immersive
user experience.

Source: https://developers.google.com/web/progressive-web-apps/

O bucks

GOOGLE'S PWA CHECKLIST

https://developers.google.com/web/progressive-web-apps/checklist

Some of the baseline requirements:

* Site is served over HTTPS

* Pages are responsive on tablets & mobile devices
* All app URLs load while offline

* Metadata provided for Add to Home screen

* Site works cross-browser

* Each page has a URL (deep linking)

* Etc...

) bucks,

HOW DO WE BUILD A PROGRESSIVE WEB APP?

&) bucks

IN ASPAET..

Web APl + Single Page Application = SPA
(almost a PWA)

* The term single-page application (SPA) is a broadly applied term...
but generally speaking, an SPA is a web application whose initial
content is delivered as a combination of HTML and JavaScript and
whose subsequent operations are performed using a RESTful web
service that delivers data via JSON in response to Ajax requests.

* This differs from a Razor Pages app, for example, where operations
performed by the user result in new HTML documents being
generated in response to synchronous HTTP requests — we can call
this type of application a round-trip application (RTA).

O bucks

ASPNET CORE WEB API

Source: https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-web-api?view=aspnetcore-2.2

Client

HTTP request

MVC app

-

HTTP response

{Name:"todol"}

controller

SM read/write

Data access
layer

8

O

bucks

new university

ADVANTAGES OF SINGLE PAGE APPLICATIONS

The advantages of a SPA are that...
* less bandwidth is required
* the user receives a smoother experience

Disadvantages

* the smoother experience can be hard to achieve and that the
complexity of the JavaScript code required for a SPA demands careful
design and testing.

Many applications mix and match SPA and RTA techniques, where
each major functional area of the application is delivered as a SPA, and
navigation between functional areas is managed using standard HTTP

requests that create a new HTML document.
O bucks

CREATING A WEB API PROJECT

.NET Core v | ASP.NET Core 2.2 v | Learn more
ni@
~J &1 B
Empty AP| Web Web Razor Class
Application Application Library
(Model-View-
Controller)

B & &

Angular Reacts React,js and

Redux

Get additional project templates

[Enable Docker Support (Requires Docker for Windows)

0S: Windows

Configure for HTTPS

A project template for creating an ASP.NET Core
application with an example Controller for a RESTful
HTTP service. This template can also be used for
ASP.NET Core MVC Views and Controllers.

Learn more
Author: Microsoft
Source: SDK 2.2

Authentication: No Authentication

Change Authentication

OK Cancel

SINGLE PAGE APPLICATIONS

Web API + client-side framework (or you could use raw JS)

JS client-side frameworks...
- ReactlS - https://reactjs.org/
- AngularlS - https://angularjs.org/

- Knockout - https://knockoutjs.com/

~ &1 B &

Empty API Web Web Razor Class
Application Application Library
(Model-View-
Controller)

g : &
Angular React)s Reactjs and o bUC kS

Redux new university

SINGLE PAGE APPLICATIONS..

* The transition to a single-page application puts more of a burden on
the browser because | need to preserve application state at the
client.

* | need a data model that | can update, a series of logic operations
that | can perform to transform the data and a set of Ul elements that
allows the user to trigger those operations.

* In short, | need to recreate a miniature version of the MVC pattern in
the browser.

* The library that Microsoft has adopted for single-page applications is
Knockout, which creates a JavaScript implementation of the MVC
pattern (or, more accurately, the MVVM pattern)

O bucks

MVVM

Model-View-ViewModel

* Model = the data or business logic, completely Ul independent, that
stores the state and does the processing (exactly as it is in MVC)

* View = the visual elements, the buttons, graphics and more complex
controls of a GUI (again, as in MVC)

* ViewModel = "Model of a View" and can be thought of as abstraction
of the view, but it also provides a specialization of the Model that the
View can use for data-binding. The ViewModel contains data-
transformers that convert Model types into View types, and it
contains Commands the View can use to interact with the Model.

Goes all the way back to 2005:
https://blogs.msdn.microsoft.com/johngossman/2005/10/08/introduc
tion-to-modelviewviewmodel-pattern-for-building-wpf-apps/

) bucks,

MVVM

e— ViewModel
DataBinding

Presentation and Presentation Logic BusinessLogicandData

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel

bucks

new university

MVVM

A key aspect of the MVVM approach is data binding:

* In simple examples, the View is data bound directly to the Model. Parts of
the Model are simply displayed in the view by one-way data binding.

* Other parts of the model can be edited by directly binding controls two-way
to the data. For example, a boolean in the Model can be data bound to a
CheckBox, or a string field to a TextBox.

* In practice however, only a small subset of application Ul can be data bound
directly to the Model... The Model is very likely to have a data types that
cannot be mapped directly to controls.

* The Ul may want to perform complex operations that must be implemented
in code which doesn't make sense in our strict definition of the View but are
too specific to be included in the Model.

* Finally we need a place to put view state such as selection or modes.

The ViewModel is responsible for all of these tasks.

0 bucks

KNOCKOUT AS AN EXAMPLE

Some features of https://knockoutjs.com

Declarative Bindings Automatic Ul Refresh
Easily associate DOM elements When your data model's state
with model data using a concise, changes, your Ul updates

readable syntax automatically

&) bucks

KNOCKOUT AS AN EXAMPLE

Choose o ticket class:

Binding attributes
declaratively link
DOM slamants
with model
properties

data-bing="enable: chosenTicket,

click: resetTicket"=Clear

1y data-bind="with: chosenTicket"
You have chosen <b dota-bind="text: nome"»</ b
($</span=)

<script> Your view model
function TicketsViewModel() { hioldsthe Ul's
this.tickets underlying data
f name: "Economy", price: 199 .95 and behaviors
{ . "B 5", price:
{ ' lass", price:
13
this.chosenTicket = ko.observable(};

this.resetTicket = function() { this.chosenTicket(1) }
1

¥
ko.applyBindings{new TicketsViewModel());

</script>

KNOCKOUT AS AN EXAMPLE

Represent your items as a JavaScript array, and then use a foreach
binding to transform this array into a TABLE or set of DIVs. Whenever
the array changes, the Ul changes to match (you don’t have to figure
out how to inject new TRs or where to inject them).

The rest of the Ul stays in sync. For example, you can declaratively bind
a SPAN to display the number of items as follows:

There are items

Similarly, to make the ‘Add’ button enable or disable depending on the
number of items:

<button data-bind="enable: myItems().length < 5">Add</button>

KNOCKOUT —INTERAGTING WITH AN API

https://knockoutjs.com/documentation/json-data.html

Knockout doesn’t force you to use any one particular technique to load
or save data. A commonly-used mechanism is jQuery’s Ajax helper
methods, such as getJSON, post, and ajax. You can fetch data from the
server:

$.getISON("/some/url”,

})

... or you can send data to the server:

data =
$.post("/some/url”, data, (returnedData) {

}

KNOCKOUT AND MVVM

* A model: your application’s stored data. This data represents objects and
operations in your business domain (e.g., bank accounts that can perform
money transfers) and is independent of any Ul. When using KO, you will
usually make Ajax calls to some server-side code to read and write this
stored model data.

* A view model: a pure-code representation of the data and operations on a
Ul. For example, if you’re implementing a list editor, your view model would
be an object holding a list of items, and exposing methods to add and
remove items.

* Note that this is not the Ul itself: it doesn’t have any concept of buttons or display
styles. It’s not the persisted data model either - it holds the unsaved data the user

is working with. When using KO, your view models are pure JavaScript objects
that hold no knowledge of HTML.

* A view: a visible, interactive Ul representing the state of the view model. It
displays information from the view model, sends commands to the view
model (e.g., when the user clicks buttons), and updates whenever the state
of the view model changes.

* When using KO, your view is simply your HTML document with declarative
bindings to link it to the view model.

Source: https://knockoutjs.com/documentation/observables.html ‘A’ bUC kS

KNOCKOUT AND MVVM

To create a view model with KO, just declare any JavaScript object. For
example...

myViewModel =
personName: 'Bob’,

personAge: 123

}s

You can then create a very simple view of this view model using a
declarative binding. For example, the following markup displays the
personName value:

The name is

RESOURCES AND TUTORIALS

* Create a standalone Web API project using ASP.NET Core:
https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-web-
api?view=aspnetcore-2.2&tabs=visual-studio

* Knockout Tutorial: https://jakeydocs.readthedocs.io/en/latest/client-
side/knockout.html

* https://knockoutjs.com/documentation/observables.html#mvvm an
d view models

* ASP.NET Core React.js tutorial:
https://reactjs.net/tutorials/aspnetcore.html

* How to build a good RESTful API (Video):
https://www.youtube.com/watch?v=sMKsmZbpyjE

&) bucks

ANOTHER FULL TUTORIAL..

Pro ASP.NET MVC 5 (Fifth Edition)

Available online (and in print) via BNU Library

Chapter 27
Covers the Web API
and SPA approach

Pro

ASP.NET
MVC 5

FIFTH EDITION

CHAPTER 27

Web API and Single-page Applications

In this chapter, I describe the Web API feature, which is a relatively new addition to the ASP.NET platform that allows
you to quickly and easily create Web services that provide an API to HTTP clients, known as Web APIs.

The Web API feature is based on the same foundation as the MVC Framework applications, but is not part of
the MV mework. Instead, Microsoft has taken some key classes and characteristics that are associated with the
System.Web.Mvc namespace and duplicated them in the System.Web.Http namespace. The idea is that Web API is
part of the core ASP.NET platform and can be used in other types of Web applications or used 1-al Web
services engine. I have included Web API in this book because one of the main uses for it is to create single-page
applications (SPAs) by combining the Web API with MVC Framework features you have seen in previous chapters.
I'll explain what SPAs are and how they work later in the chapter.

That is not to take away from the way that Web API simplifies creating Web services. It is a huge improvement
over the other Microsoft Web service technologies that have been appearing over the last decade or so. I like the Web
API and you should use it for your projects, not least because it is simple and built on the same design that the MVC
Framework uses.

Istart this chapter by creating a regular MVC Framework application and then using the Web API to transform
itinto a single-page application. This is a surprisingly simple example, so I have treated the process like an extended
example and applied some of the relevant techniques from earlier chapters because you can never have enough
examples. Table 27-1 provides the summary for this chapter.

SEQ CONSIDERATIONS

&) bucks

WHAT IS SEO ANYWAY?

* SEO = Search Engine Optimisation

* SEO “is the practice of increasing the quantity and quality of traffic to
your website through organic search engine results.”

* Google (or any search engine you're using) has a crawler that goes
out and gathers information about all the content they can find on
the Internet.

* The crawlers bring all those 1s and Os back to the search engine to
build an index.

* That index is then fed through an algorithm that tries to match all
that data with your query.

* How does that algorithm work........ ?

Source: https://moz.com/learn/seo/what-is-seo

0 bucks

SEARCH ENGINE ALGORITHMS

* We don’t actually know exactly how the Google Search Engine
Algorithm works

* But, Google (and others) give us some strong clues
* It used to be about stuffing keywords in your pages

* Now it is all about providing useful, relevant, reputable content that
is presented in an easily consumable, semantic and valid manner.

Further reading:

https://www.google.com/intl/en uk/search/howsearchworks/

) bucks,

APPLYING SEO TO WEB APPS?

* For a lot of web apps, we may not typically need to worry about SEO
because we don’t need users to find the app online.

* For other web apps, like online shops, we definitely DO want search
engines to find all of our content.

For “closed” web apps, what are the issues we need to think about?

* If our web app is exposed to the public web but we don’t want
Google or other SEs to spider it, we can add a robots.txt file to the
root of the web app with the following code inside:

User—-agent: *
Disallow: /

https://moz.com/learn/seo/robotstxt

O bucks

APPLYING SEO TO WEB APPS?

GO SIE site:testdomain.co.uk “

Weh Images Maps Shopping Mare = Search tools

o PRRIEEILIEE A £ o o WEERREREL FRERS [T R O SEt TRIR Y
Page 3 of about T3 results (0.15 seconds

sub1.testdomain.co.uk/
A description for this result is not available because of this site’s robots txd — learn more.

sub? testdomain.co uk/
A description for this result is not available because of this site’s robots txt — learn more.

sub3 testdomain.co.uk/
A description for this result is not available because of this site’s robots txt — learn more.

sub4 testdomain.co.uk/
A descrption for this result is not available because of this site’s robots txd — learn more.

™ bucks

new university

USABILITY AND USER EXPERIENCE

&) bucks

USABILITY AND USER EXPERIENGE

* UX = User Experience

* If we are looking at developing Progressive Web Apps, Google’s PWA
checklist is a good place to start to cover off all the essential technical
and usability requirements we would expect from a good quality
PWA

» “Usability” is part of the broader term “user experience” and refers
to the ease of access and/or use of a product or website.

Source: https://www.interaction-design.org/literature/topics/usability

Further reading:

https://developers.google.com/web/fundamentals/design-and-ux/ux-basics/

) bucks,

RECOMMENDED BOOK

Steve Krug

&

DON'T

MAKE
ME
THINK

g_w\e\’r&c\

arA Mobrle

A Common Sens¢ Approach to Web,Usability ‘l \ bUC kS
new university

HAPPY CODING!

