
CO550 – Web Applications

UNIT 11 – Wider Context of Web Applications,
Progressive Web Apps, SEO, and UX

Wider Context of Web Applications

• Progressive Web Apps (PWAs) and Single Page Applications
(SPAs)

• SEO Considerations
• UX (User Experience)

What are Progressive Web Apps?

Google’s definition…

Progressive Web Apps are user experiences that have the reach of the
web, and are:
• Reliable - Load instantly and never show the downasaur, even in

uncertain network conditions.
• Fast - Respond quickly to user interactions with silky smooth

animations and no janky scrolling.
• Engaging - Feel like a natural app on the device, with an immersive

user experience.

Source: https://developers.google.com/web/progressive-web-apps/

Google’s PWA Checklist

https://developers.google.com/web/progressive-web-apps/checklist

Some of the baseline requirements:

• Site is served over HTTPS
• Pages are responsive on tablets & mobile devices
• All app URLs load while offline
• Metadata provided for Add to Home screen
• Site works cross-browser
• Each page has a URL (deep linking)
• Etc…

How do we build a progressive web app?

in ASP.NET…

Web API + Single Page Application = SPA
(almost a PWA)

• The term single-page application (SPA) is a broadly applied term…
but generally speaking, an SPA is a web application whose initial
content is delivered as a combination of HTML and JavaScript and
whose subsequent operations are performed using a RESTful web
service that delivers data via JSON in response to Ajax requests.

• This differs from a Razor Pages app, for example, where operations
performed by the user result in new HTML documents being
generated in response to synchronous HTTP requests – we can call
this type of application a round-trip application (RTA).

ASP.NET Core Web API
Source: https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-web-api?view=aspnetcore-2.2

Advantages of Single Page Applications

The advantages of a SPA are that…
• less bandwidth is required
• the user receives a smoother experience

Disadvantages
• the smoother experience can be hard to achieve and that the

complexity of the JavaScript code required for a SPA demands careful
design and testing.

Many applications mix and match SPA and RTA techniques, where
each major functional area of the application is delivered as a SPA, and
navigation between functional areas is managed using standard HTTP
requests that create a new HTML document.

Creating a Web API Project

Single Page Applications

Web API + client-side framework (or you could use raw JS)

JS client-side frameworks…
- ReactJS - https://reactjs.org/
- AngularJS - https://angularjs.org/
- Knockout - https://knockoutjs.com/

Single page Applications…

• The transition to a single-page application puts more of a burden on
the browser because I need to preserve application state at the
client.

• I need a data model that I can update, a series of logic operations
that I can perform to transform the data and a set of UI elements that
allows the user to trigger those operations.

• In short, I need to recreate a miniature version of the MVC pattern in
the browser.

• The library that Microsoft has adopted for single-page applications is
Knockout, which creates a JavaScript implementation of the MVC
pattern (or, more accurately, the MVVM pattern)

MVVM
Model-View-ViewModel

• Model = the data or business logic, completely UI independent, that
stores the state and does the processing (exactly as it is in MVC)

• View = the visual elements, the buttons, graphics and more complex
controls of a GUI (again, as in MVC)

• ViewModel = "Model of a View“ and can be thought of as abstraction
of the view, but it also provides a specialization of the Model that the
View can use for data-binding. The ViewModel contains data-
transformers that convert Model types into View types, and it
contains Commands the View can use to interact with the Model.

Goes all the way back to 2005:
https://blogs.msdn.microsoft.com/johngossman/2005/10/08/introduc
tion-to-modelviewviewmodel-pattern-for-building-wpf-apps/

MVVM

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel

MVVM
A key aspect of the MVVM approach is data binding:

• In simple examples, the View is data bound directly to the Model. Parts of
the Model are simply displayed in the view by one-way data binding.

• Other parts of the model can be edited by directly binding controls two-way
to the data. For example, a boolean in the Model can be data bound to a
CheckBox, or a string field to a TextBox.

• In practice however, only a small subset of application UI can be data bound
directly to the Model... The Model is very likely to have a data types that
cannot be mapped directly to controls.

• The UI may want to perform complex operations that must be implemented
in code which doesn't make sense in our strict definition of the View but are
too specific to be included in the Model.

• Finally we need a place to put view state such as selection or modes.

The ViewModel is responsible for all of these tasks.

Knockout as an example
Some features of https://knockoutjs.com

Knockout as an example

Knockout as an example
Represent your items as a JavaScript array, and then use a foreach
binding to transform this array into a TABLE or set of DIVs. Whenever
the array changes, the UI changes to match (you don’t have to figure
out how to inject new TRs or where to inject them).
The rest of the UI stays in sync. For example, you can declaratively bind
a SPAN to display the number of items as follows:

Similarly, to make the ‘Add’ button enable or disable depending on the
number of items:

Knockout – Interacting with an API
https://knockoutjs.com/documentation/json-data.html

Knockout doesn’t force you to use any one particular technique to load
or save data. A commonly-used mechanism is jQuery’s Ajax helper
methods, such as getJSON, post, and ajax. You can fetch data from the
server:

… or you can send data to the server:

Knockout and MVVM
• A model: your application’s stored data. This data represents objects and

operations in your business domain (e.g., bank accounts that can perform
money transfers) and is independent of any UI. When using KO, you will
usually make Ajax calls to some server-side code to read and write this
stored model data.

• A view model: a pure-code representation of the data and operations on a
UI. For example, if you’re implementing a list editor, your view model would
be an object holding a list of items, and exposing methods to add and
remove items.

• Note that this is not the UI itself: it doesn’t have any concept of buttons or display
styles. It’s not the persisted data model either - it holds the unsaved data the user
is working with. When using KO, your view models are pure JavaScript objects
that hold no knowledge of HTML.

• A view: a visible, interactive UI representing the state of the view model. It
displays information from the view model, sends commands to the view
model (e.g., when the user clicks buttons), and updates whenever the state
of the view model changes.

• When using KO, your view is simply your HTML document with declarative
bindings to link it to the view model.

Source: https://knockoutjs.com/documentation/observables.html

Knockout and MVVM
To create a view model with KO, just declare any JavaScript object. For
example…

You can then create a very simple view of this view model using a
declarative binding. For example, the following markup displays the
personName value:

Resources and Tutorials

• Create a standalone Web API project using ASP.NET Core:
https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-web-
api?view=aspnetcore-2.2&tabs=visual-studio

• Knockout Tutorial: https://jakeydocs.readthedocs.io/en/latest/client-
side/knockout.html

• https://knockoutjs.com/documentation/observables.html#mvvm_an
d_view_models

• ASP.NET Core React.js tutorial:
https://reactjs.net/tutorials/aspnetcore.html

• How to build a good RESTful API (Video):
https://www.youtube.com/watch?v=sMKsmZbpyjE

Another Full Tutorial…
Pro ASP.NET MVC 5 (Fifth Edition)

Available online (and in print) via BNU Library

Chapter 27
Covers the Web API
and SPA approach

SEO Considerations

What is SEO Anyway?

• SEO = Search Engine Optimisation
• SEO “is the practice of increasing the quantity and quality of traffic to

your website through organic search engine results.”
• Google (or any search engine you're using) has a crawler that goes

out and gathers information about all the content they can find on
the Internet.

• The crawlers bring all those 1s and 0s back to the search engine to
build an index.

• That index is then fed through an algorithm that tries to match all
that data with your query.

• How does that algorithm work……..?

Source: https://moz.com/learn/seo/what-is-seo

Search Engine Algorithms

• We don’t actually know exactly how the Google Search Engine
Algorithm works

• But, Google (and others) give us some strong clues
• It used to be about stuffing keywords in your pages
• Now it is all about providing useful, relevant, reputable content that

is presented in an easily consumable, semantic and valid manner.

Further reading:
https://www.google.com/intl/en_uk/search/howsearchworks/

Applying SEO to Web Apps?

• For a lot of web apps, we may not typically need to worry about SEO
because we don’t need users to find the app online.

• For other web apps, like online shops, we definitely DO want search
engines to find all of our content.

For “closed” web apps, what are the issues we need to think about?
• If our web app is exposed to the public web but we don’t want

Google or other SEs to spider it, we can add a robots.txt file to the
root of the web app with the following code inside:

User-agent: *
Disallow: /

https://moz.com/learn/seo/robotstxt

Applying SEO to Web Apps?

Usability and User Experience

Usability and User Experience

• UX = User Experience
• If we are looking at developing Progressive Web Apps, Google’s PWA

checklist is a good place to start to cover off all the essential technical
and usability requirements we would expect from a good quality
PWA

• “Usability” is part of the broader term “user experience” and refers
to the ease of access and/or use of a product or website.

Source: https://www.interaction-design.org/literature/topics/usability

Further reading:

https://developers.google.com/web/fundamentals/design-and-ux/ux-basics/

Recommended Book

Happy Coding!

