
CO453 Application Programming

Week 2 - C# Part 5
Arrays and sorting algorithms

Data Structures
We can combine simple data types into more complex structures

Array
a numbered list of
similar data types

Class
a single package to hold
data and functions
(methods) for an object

File
long-term storage for
data

Slide 4

Imagine that we want to store the ages of a class of 30 students
int age1 ;
int age2 ;
int age3 ;
int age4 ;
etc.

age1 = dialog ("Enter age of student 1"); age1 = dialog ("Enter age of student 1");
age2 = dialog ("Enter age of student 2");
age3 = dialog ("Enter age of student 3");

etc.

Problem: storing lots of data

What if there
are 300
students?

There must be
a better way!

Arrays as a solution

Arrays allow us to store lots of data as a collection of elements

Each element acts like a variable (storage space) but is
referenced as being part of an array (age in this case)

age
0 23
1 32
2 43
3 54
4 etc

int age1 = 23;
int age2 = 32;
int age3 = 43;
int age4 = 54;
etc.

Array method

names[1] = “Fred”;

names
0 names[0]
1 names[1]
2 names[2]
3 names[3]
4 names[4]

… etc …

29 names[29]

names[2] = Console.ReadLine();

string[] names; //define array
names = new string[30]; //create array

Array index

JoAnna

Fred

Anna

FRED
Jo

names[4] = “Jo”;

names[0] = names[4] + names[2];
names[3] = names[1].ToUpper();

Zero-based arrays
Defining an array of 30 integers would be
written: int age[30];

Question: are the elements numbered…
1 – 30 ?

or
0 – 29 ?0 – 29

Input using a loop

for (int i = 0; i < 30; i++) {
Console.Write(“Enter age ” + (i+1));
age[i] = Convert.ToInt32(Console.ReadLine());

}

age
0 age[0]
1 age[1]
2 age[2]
3 age[3]
4 age[4]

… etc …

29 age[29]

A for loop can be used to input the contents of the whole array

Why use a for loop?

Enter age 1

Enter age 2

Enter age 3

23
43

56
23

43

56

etc.

Output using a loop

for (int i = 0; i < 30; i++) {
Console.WriteLine(“Age no. ” + (i+1)

+ “ is ” + age[i]);
}

age
0 23 age[0]
1 43 age[1]
2 56 age[2]
3 age[3]
4 age[4]

… etc …

29 age[29]

A for loop can be used to print the contents of the whole array

Age no.1 is 23

Age no.2 is 43

Age no.3 is 56

etc.

Slide 10

Other Types of Array
We can produce arrays using any of the usual data types: e.g.

int age[30]; // defines an array of 30 integers

float wage[20]; // an array of 20 float numbers

object items[100]; // an array of 100 objects

string names[20]; // an array of 20 strings

Each element of an array can be
accessed using the array index
(the integer variable i in the
previous slides)

age [i]
wage [i]
items [i]
names [i]

age [i]
wage [i]
items [i]
names [i]

Slide 11

Initialising Arrays
Arrays can be initialised as they are declared e.g.

int arr1[5] = { 1, 2, 6, 0, 4 } ;int arr1[5] = { 1, 2, 6, 0, 4 } ;

double arr2[10] = { 3.2, 4.1, 6.7 } ;double arr2[10] = { 3.2, 4.1, 6.7 } ;

int arr3[100] = { 0 } ;int arr3[100] = { 0 } ;

int arr4[] = { 1, 2, 6, 0, 4 } ;int arr4[] = { 1, 2, 6, 0, 4 } ;

initialises arr1
with 5 values
initialises arr1
with 5 values

initialises arr2
with 3 values
(the rest are 0)

initialises arr2
with 3 values
(the rest are 0)

initialises all arr3
elements to 0
initialises all arr3
elements to 0

Array arr4 is
created of correct
size

Array arr4 is
created of correct
size

Games Scores

public static void Main()
{

}

Main()
method

class Game
{

Game myGame = new Game();
myGame.getScores();
myGame.showScores();

public Game()
{

}

scores = new int[];

Game class
constructor

Here an empty scores array
of size MAX is created

int[] scores; // define an array for scores
const int MAX = 6; // set a maximum size

MAX

Game Class Methods (continued)public void getScores()
{

}

Console.WriteLine("Game Scores Entry");
Console.WriteLine("=================");
for (int i=0; i < ; i++)
{

}

Console.Write("Enter Score " + (i+1));
scores[] = Convert.ToInt32(Console.ReadLine());i

MAX

public void showScores()
{

}

Console.WriteLine("Game Scores");
Console.WriteLine("===========");
for (int i=0; i < ; i++)
{

}

Console.WriteLine("Score " + (i+1)
+ " is " + scores[]);i

MAX

All MAX scores are here
entered in the scores array

Two-Dimensional
Arrays

(tables)

Two-Dimensional
Arrays

(tables)

marks array

0 1 2 3 4

0

1

2

Arrays with 2 Dimensions

Define the Array
int[,] marks = new int [3,5];

24

19marks [0, 1] = 24;
marks [1, 4] = 41;

marks [1, 0] = marks [0, 1] + marks [2, 3];

4143

message("The mark for student 5 of class 2 is " + marks [1][4]) ;message("The mark for student 5 of class 2 is " + marks [1][4]) ;

Input to the array

Output from the array

2-dimensional arrays look like tables with rows and columns

marks [2, 3] = Console.ReadLine();

Slide 16

the code uses the code uses
nested
for-loops

Filling the 2-D marks Array
To fill the whole marks array, we need to use 2 for-loops

for (i = 0; i < 3; i++) for (i = 0; i < 3; i++) // 3 classes

{

}

Console.Write("Enter mark for class " + i + " student
" + j) ;
marks[i , j] = Convert.ToInt32(Console.ReadLine());

Enter mark for class 0 student 0 64
Enter mark for class 0 student 1 78
Enter mark for class 0 student 2 56
Enter mark for class 0 student 3 77

etc.

for (j = 0; j < 5; j++) // 5 students per class

Enter mark for class 0 student 4 83
Enter mark for class 1 student 0 46

marks array

0 1 2 3 4

0

1

2

64 78 56 77 83

46

0
0 1 2 3 4

1

Sorting Algorithms

• Sorting algorithms order items in an array so
certain values can be found quicker
– An ordered list is much easier to search than an

unordered list

• There are many sorting algorithms
– There isn’t one algorithm that is better than the

rest
– It depends on the size of the array and how

ordered the list is
– Some are designed to sort large amounts of data;

where as others are only a few lines of code

Bubble Sort Algorithm

loop N times
loop from 0 up to N-1

if current item > next item
swap the two items

end if
end loop

end loop

Bubble sort method

public void BubbleSort(int[] A)
{

}

int temp;
for (int i = 0; i < A.Length; i++) //loop N times (size of the array)

{
for (int j = 0; j < A.Length - 1; j++) // loop from 1 to N-1

{
if (A[j] > A[j + 1]) // swap values
{

temp = A[j];
A[j] = A[j + 1];
A[j + 1] = temp;

}
}

}

Game Class Methods (continued)public static void Main()
{

}

int[] A = new int[30]; //declare array
Random r = new Random();
for (int i=0; i < ; i++) //populate

BubbleSort(A); // see previous page
Display(A);

A[] = r.next(100);i
A.Length

public void Display()
{

}
i

for (int i=0; i < A.Length; i++)
Console.WriteLine("Value "+i+" is "+ A[]);

Example program

Brian Ward Slide 22

The Last Slide

Brian Ward Slide 23

Extra
Reading

Passing arrays

To pass an array to a function, we only need
to pass its name. Any changes made inside the
function automatically change the original array

Recap

• The items in an array are called elements
• We specify how many elements an array will have

when we declare the size of the array (if ‘fixed-size’)
• Dynamic arrays don’t need a size on declaration

• Elements are numbered and can referred to by
number inside the [] is called the index

• This is used when data is input and output
• Can only store data if it matches the type

the array is declared with

Brian Ward Slide 26

The Constructor
• The constructor is a special method in a

class
• It always has the same name as the class
• When an object is created from a class,

the constructor is automatically executed
• It is used to initialise the new object
public Dice()
{

}
rand = new Random();

This constructor

for the Dice

This constructor
creates a new
Random object,
used to generate
random numbers
for the Dice

Brian Ward Slide 27

How can we return more than 1 result from
a method or function?

• We can use parameters to make changes to the
original variables.

• To do this we can use reference parameters instead of
value parameters.

• Reference parameters are defined using ref
e.g. public void times (ref double n1, ref double n2)

defines n1 and n2 as reference parameters
• Now any change to n1 or n2 inside the method will

also change the value of the parameter passed to it.
• This is because they are essentially the same variable

.. using the same memory address
• Note you must also use ref when you call the method

e.g. times (ref number1, ref number2);

• We can use parameters to make changes to the
original variables.

• To do this we can use reference parameters instead of
value parameters.

• Reference parameters are defined using ref
e.g. public void times (ref double n1, ref double n2)

defines n1 and n2 as reference parameters
• Now any change to n1 or n2 inside the method will

also change the value of the parameter passed to it.
• This is because they are essentially the same variable

.. using the same memory address
• Note you must also use ref when you call the method

e.g. times (ref number1, ref number2);

