
CO453 Application Programming

Week 2 - C# Part 5
Arrays and sorting algorithms





Data Structures
We can combine simple data types into more complex structures

Array
a numbered list of 
similar data types

Class
a single package to hold 
data and functions
(methods) for an object

File
long-term storage for
data
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Imagine that we want to store the ages of a class of 30 students
int age1 ;
int age2 ;
int age3 ;
int age4 ;
etc.

age1 = dialog ( "Enter age of student 1" );   age1 = dialog ( "Enter age of student 1" );   
age2 = dialog ( "Enter age of student 2" );
age3 = dialog ( "Enter age of student 3" );  

etc.

Problem: storing lots of data

What if there 
are 300 
students?

There must be 
a better way!



Arrays as a solution

Arrays allow us to store lots of data as a collection of elements

Each element acts like a variable (storage space) but is 
referenced as being part of an array (age in this case)

age
0 23
1 32
2 43
3 54
4 etc

int age1 = 23;
int age2 = 32;
int age3 = 43;
int age4 = 54;
etc.



Array method

names[1] = “Fred”;

names
0 names[0]
1 names[1]
2 names[2]
3 names[3]
4 names[4]

… etc …

29 names[29]

names[2] = Console.ReadLine();

string[] names;    //define array
names = new string[30]; //create array

Array index

JoAnna

Fred

Anna

FRED
Jo

names[4] = “Jo”;

names[0] = names[4] + names[2];
names[3] = names[1].ToUpper();



Zero-based arrays 
Defining an array of 30 integers would be 
written:                 int age[30]; 

Question: are the elements numbered…
1 – 30 ?

or 
0 – 29 ?0 – 29 



Input using a loop

for (int i = 0; i < 30; i++) {
Console.Write(“Enter age ” + (i+1));
age[i] = Convert.ToInt32(Console.ReadLine());

}

age
0 age[0]
1 age[1]
2 age[2]
3 age[3]
4 age[4]

… etc …

29 age[29]

A for loop can be used to input the contents of the whole array

Why use a for loop?

Enter age 1 

Enter age 2 

Enter age 3          

23
43

56
23

43

56

etc.          



Output using a loop

for (int i = 0; i < 30; i++) {
Console.WriteLine(“Age no. ” + (i+1) 

+ “ is ” + age[i]);
}

age
0 23 age[0]
1 43 age[1]
2 56 age[2]
3 age[3]
4 age[4]

… etc …

29 age[29]

A for loop can be used to print the contents of the whole array

Age no.1 is   23

Age no.2 is   43

Age no.3 is   56

etc.   
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Other Types of Array
We can produce arrays using any of the usual data types: e.g.

int age[30];  // defines an array of 30 integers 

float wage[20]; //  an array of 20 float numbers  

object items[100]; //  an array of 100 objects 

string names[20]; //  an array of 20 strings

Each element of an array can be 
accessed using the array index
(the integer variable i  in the 
previous slides)

age [ i ]
wage [ i ]
items [ i ]
names [ i ]

age [ i ]
wage [ i ]
items [ i ]
names [ i ]



Slide 11

Initialising Arrays
Arrays can be initialised as they are declared e.g.

int arr1[5] = { 1, 2, 6, 0, 4 } ;int arr1[5] = { 1, 2, 6, 0, 4 } ;

double  arr2[10] = { 3.2, 4.1, 6.7 } ;double  arr2[10] = { 3.2, 4.1, 6.7 } ;

int arr3[100] = { 0 } ;int arr3[100] = { 0 } ;

int arr4[ ] = { 1, 2, 6, 0, 4 } ;int arr4[ ] = { 1, 2, 6, 0, 4 } ;

initialises arr1
with 5 values 
initialises arr1
with 5 values 

initialises arr2 
with 3 values
(the rest are 0)

initialises arr2 
with 3 values
(the rest are 0)

initialises all arr3 
elements to 0
initialises all arr3 
elements to 0

Array arr4 is
created of correct
size

Array arr4 is
created of correct
size



Games Scores

public static void Main()
{

}

Main()
method 

class Game
{

Game myGame = new Game();
myGame.getScores();
myGame.showScores();

public Game()
{

}

scores = new int[    ];

Game class 
constructor

Here an empty scores array 
of size MAX is created

int[] scores; // define an array for scores
const int MAX = 6; // set a maximum size

MAX



Game Class Methods (continued)public void getScores()
{

}

Console.WriteLine("Game Scores Entry");
Console.WriteLine("=================");
for (int i=0; i <     ; i++)
{

}

Console.Write("Enter Score " + (i+1));
scores[ ] = Convert.ToInt32(Console.ReadLine());i

MAX

public void showScores()
{

}

Console.WriteLine("Game Scores");
Console.WriteLine("===========");
for (int i=0; i <     ; i++)
{

}

Console.WriteLine("Score " + (i+1) 
+ " is " + scores[ ]);i

MAX

All MAX scores are here 
entered in the scores array 



Two-Dimensional
Arrays

(tables)

Two-Dimensional
Arrays

(tables)



marks array

0 1 2 3 4

0  

1

2

Arrays with 2 Dimensions

Define the Array
int[,] marks = new int [3,5];

24

19marks [0, 1]  = 24; 
marks [1, 4]  = 41;

marks [1, 0] = marks [0, 1] + marks [2, 3];

4143

message( "The  mark for student 5 of class 2 is " + marks [1][4] ) ;message( "The  mark for student 5 of class 2 is " + marks [1][4] ) ;

Input to the array

Output from the array

2-dimensional arrays look like tables with rows and columns

marks [2, 3] = Console.ReadLine(); 
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the code uses the code uses 
nested
for-loops

Filling the 2-D marks Array
To fill the whole marks array, we need to use 2 for-loops

for ( i = 0; i < 3; i++) for ( i = 0; i < 3; i++) // 3 classes 

{

}

Console.Write("Enter mark for class " + i + " student 
" + j ) ;
marks[i , j] = Convert.ToInt32(Console.ReadLine());

Enter mark for class 0 student 0 64
Enter mark for class 0 student 1 78
Enter mark for class 0 student 2 56
Enter mark for class 0 student 3 77

etc.

for ( j = 0; j < 5; j++) // 5 students per class

Enter mark for class 0 student 4 83
Enter mark for class 1 student 0 46

marks array

0 1 2 3 4

0

1

2

64 78 56 77 83

46

0
0 1 2 3 4

1



Sorting Algorithms



• Sorting algorithms order items in an array so 
certain values can be found quicker
– An ordered list is much easier to search than an 

unordered list

• There are many sorting algorithms
– There isn’t one algorithm that is better than the 

rest
– It depends on the size of the array and how 

ordered the list is
– Some are designed to sort large amounts of data; 

where as others are only a few lines of code



Bubble Sort Algorithm

loop N times
loop from 0 up to N-1

if current item > next item
swap the two items

end if
end loop

end loop



Bubble sort method

public void BubbleSort(int[] A)
{

}

int temp; 
for (int i = 0; i < A.Length; i++) //loop N times (size of the array)

{
for (int j = 0; j < A.Length - 1; j++) // loop from 1 to N-1

{
if (A[j] > A[j + 1]) // swap values 
{

temp = A[j];
A[j] = A[j + 1];
A[j + 1] = temp;

}
}

}



Game Class Methods (continued)public static void Main()
{

}

int[] A = new int[30];     //declare array
Random r = new Random();
for (int i=0; i <          ; i++) //populate 

BubbleSort(A); // see previous page
Display(A);

A[ ] = r.next(100);i
A.Length

public void Display()
{

}
i

for (int i=0; i < A.Length; i++)
Console.WriteLine("Value "+i+" is "+ A[ ]);

Example program
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The Last Slide
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Extra
Reading



Passing arrays

To pass an array to a function, we only need 
to pass its name. Any changes made inside the
function automatically change the original array



Recap

• The items in an array are called elements
• We specify how many elements an array will have

when we declare the size of the array (if ‘fixed-size’)
• Dynamic arrays don’t need a size on declaration 

• Elements are numbered and can referred to by 
number inside the [ ] is called the index

• This is used when data is input and output
• Can only store data if it matches the type 

the array is declared with
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The Constructor
• The constructor is a special method in a 

class
• It always has the same name as the class
• When an object is created from a class, 

the constructor is automatically executed
• It is used to initialise the new object
public Dice()
{

}
rand = new Random();

This constructor 

for the Dice

This constructor 
creates a new 
Random object, 
used to generate 
random numbers
for the Dice
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How can we return more than 1 result from 
a method or function?

• We can use parameters to make changes to the 
original variables.

• To do this we can use reference parameters instead of 
value parameters.

• Reference parameters are defined using ref
e.g. public void times (ref double n1, ref double n2)

defines  n1 and n2 as reference parameters
• Now any change to n1 or n2 inside the method will 

also change the value of the parameter passed to it.
• This is because they are essentially the same variable 

.. using the same memory address
• Note you must also use ref when you call the method

e.g.    times (ref number1, ref number2);

• We can use parameters to make changes to the 
original variables.

• To do this we can use reference parameters instead of 
value parameters.

• Reference parameters are defined using ref
e.g. public void times (ref double n1, ref double n2)

defines  n1 and n2 as reference parameters
• Now any change to n1 or n2 inside the method will 

also change the value of the parameter passed to it.
• This is because they are essentially the same variable 

.. using the same memory address
• Note you must also use ref when you call the method

e.g.    times (ref number1, ref number2);


