
CO452 Programming Concepts

Week 12 - C# Part 3
Classes, Objects, and Methods

Object Oriented
Programming

(OOP)

What is Object-Oriented Programming?

Uses Objects• Uses Objects
• OOP programs model 'things' in the real world (objects)

e.g.
– a banking program has to model:

customers, accounts, transactions (cheque, credit card)
– a medical program has to model:

patients, beds, ventilators, drugs, ...
– sometimes we are modelling physical things in the

real world
– at other times the 'thing' doesn’t exist outside the

computer .. a more abstract concept

Classes and Objects

A class is like a plan or template
for real-world objects

Slide 5

House Class

House Class

Class variables
(attributes)

• address
• houseType
• age
• numberOfRooms
• owner

etc.

Any number of objects can be produced from a class

Slide 6

Person Class
Class variables

(attributes)
• name
• occupation
• dob
• sex
• address

etc.

Person
Class

Objects are also called instances of the class

Slide 7

Circle Class
Class variables

(attributes)
• radius
• fillColour
• lineColour
• lineStyle

etc.

Class methods
• setFillColour()
• setRadius()
• moveRight()
• moveUp()

etc.

Circle Class

Objects also have methods (functions) that define their
behaviour: methods can do things with the object

Class

– sets of objects share attributes and behaviours

– all students have an id, a name, an address ... and
attend lectures

– it is more economical to define a class than to
define everything independently for every object of
that class (generalisation)

Class

– a class is like a type

– think of a class as a template or blueprint

– A designer makes drawings for a car (class)

– A factory can then manufacture individual cars
(objects)

» the blue Ford Focus 1.6L reg. no: YO54 7GD
» the red Ford Focus 2.0D reg. no: SH54 6TR

Object

– an object models (represents) well defined entities
(things)

– an object is an instance of a class

– different objects are given different names (here
derived from the student class)

– student1, student2, student3, etc.

Object

– an object has attributes
– (c# fields or instance variables)

– an object has behaviours (c# methods)

– attributes of the object, student1 are:
– id: 12345678
– name: Fred Bloggs
– address: 10 Happy Place, High Wycombe
– sex: male

– behaviours of the object, student1 are:
– attend lecture
– sit exam

Programming with
classes and objects

C# is an OOP language

class MealCosts
{

}

static void Main ()
{

}

namespace Task
{

}

using System;

OR

Creating a new Object from the MealCosts Class

MealCosts myMeals;

(); myMeals = new MealCosts();

Define Define myMeals variable

Creates and initialises
a new MealCosts object

(); MealCosts myMeals = new MealCosts();

First Create a new Object

Executing the methods of an object

(); MealCosts myMeals = new MealCosts();

Then you can call any of its methods

myMeals.inputData();

myMeals.calcTotalCosts();

myMeals.outputCosts();

Use the DOT operator

Brian Ward Ceebot 1 : Introduction to Ceebot

Example of Objects

Brian Ward Ceebot 1 : Introduction to Ceebot

Class Three Objects (Instances)

Slide 17

Objects are unique instances of a class structure

object1 object2 object3

TargetBot

List of variables:
Var1
Var2
Var3

Brian Ward Ceebot 1 : Introduction to Ceebot

. Notation
. is otherwise known as the ‘period caller’

Refers to variables and functions from objects

objectName.Var1 objectName.Function1

Brian Ward Ceebot 1 : Introduction to Ceebot

. Notation
. is otherwise known as the ‘period caller’

Refers to variables and functions from objects

objectName.Var1 objectName.Function1

Examples from Ceebot:
item.category
this.position

Brian Ward Ceebot 1 : Introduction to Ceebot

In a Game
Several Fish objects could be generated or
“spawned” from a Fish class, with relevant

variables and functions

Programming
a

MealCosts
Class

UML Class Diagram for a MealCosts Class

variables
(attributes)

methods

This shows all the data(class variables) and methods

nameMealCosts

double dayCost

calcTotalCosts()
outputCosts()

inputData()

double weekCost

double foodCost

double drinkCost
int daysPerWeek

Main()

MealCosts Class

double foodCost, drinkCost;
double dayCost, weekCost;
int daysPerWeek;

static void Main()
{

}

void inputData()
{

string input; // local input variable
Console.Write("Enter the price of a meal: £");
input = Console.ReadLine();
foodCost = Convert.ToDouble(input);
Console.Write("Enter the price of a drink: £");
// etc.

class MealCosts
{

MealCosts myMeals = new MealCosts();
myMeals.inputData();
myMeals.calcTotalCosts();
myMeals.outputCosts();

Class variables
(attributes)

Main()
Method

myMeals inputData()
method is called

Slide 24

MealCosts Class Methods (continued)
void calcTotalCosts()
{

}

void outputCosts()
{

}

dayCost = foodCost + (3 * drinkCost);
weekCost = dayCost * daysPerWeek;

Console.WriteLine("\nYour Final Costing
Results");
Console.WriteLine("==========================");
Console.WriteLine("Total cost for one day = £"

+ dayCost);
Console.WriteLine("Total cost for one week = £"

+ weekCost);

} // end of the MealCosts class

Function Called from the Main() Program

static void Main()
{

function1();
}

static void function1()
{

Console.Write(“In function1”);
}

A

Dice

Simulator

Dice Class Diagram (UML)

methods

The class contains 1 variable and 3 methods

name

Define rand as
a Random
object

Dice
Random rand

throwTheDice()
oneThrow()

Main()

variable
(attribute)

Slide 28

Definition of Dice class

private Random rand;

class Dice
{

public static void Main()
{

}

Dice myDice = new Dice();
myDice.rand = new Random();
myDice.throwTheDice();

Note:
we can control access
by making some things
private and others public

other methods

Dice Class Definition – (contd.)

public void throwTheDice()
{

}

Console.WriteLine("I have thrown "
+ oneThrow());

public void oneThrow()
{

}
return rand.Next(6)+1 ;

} // end of Dice class

returns a
random number
(1-6)

int

Example Outputs

Private and Public

private
This word is used to prevent access from
outside the class
• normally class variables are defined as private

e.g. private string choice;

public
This word is used to make a method available to
the world outside the class

e.g. public void throwTheDice()

Multiple

Dice

Throws

public void throwTheDice6Times()
{

}

Throw Dice 6 Times?

for (int i = 0; i < 6; i++)
{

}

Console.WriteLine("I have thrown "
+ oneThrow());

// New version of throwTheDice() method

Call the
oneThrow()
Method
(6 times)

Example Outputs

The Constructor
• The constructor is a special method in a

class
• It always has the same name as the class
• When an object is created from a class,

the constructor is automatically executed
• It is used to initialise the new object
public Dice()
{

}
rand = new Random(); This constructor creates

a new Random object,
used to generate random
numbers for the Dice

the new operator constructor
method

return
• return is used to return a value back from

a method or function
• using void in the method header means

that nothing is returned by this method
• If return is used you must change void to

show the type being returned (e.g. int,
string, double, etc.)

public void oneThrow()
{

}
Return rand.Next(6)+1;

int
oneThrow() returns a
random integer value
.. so change void to int

What is the difference between a
class and an object?

Quiz

Brian Ward Slide 40

The Last Slide

Extra ReadingExtra Reading

An example
using 2 Classes

• NuclearStation: a class to
control a Nuclear Power
Station

• Test: a class to test this

a Test class (incomplete)

private string choice;
private NuclearStation myStation;

public Test() // the class constructor
{

}

class Test
{

public static void Main()
{

}

myStation = new NuclearStation();

Test myTest = new Test();
myTest.testStation();

public void testStation()
{

myStation.display();
choice = myStation.getChoice();
if (choice == "1")

myStation.lowerRods(); // etc.

Create new object
from another class

NuclearStation class (incomplete)

private const string SYSTEMCODE = "NUKEME";

public void display()
{

}

class NuclearStation
{

Console.WriteLine("Nuclear Winter Station");
Console.WriteLine(" Main Menu ");
Console.WriteLine(" 1: Lower Fuel Rods ");
Console.WriteLine(" 2: Raise Fuel Rods ");
etc.

public void getChoice()
{

}

string choice;
Console.WriteLine("What do you want to do?");
Console.Write("Enter your choice:");
choice = Console.ReadLine();
return choice;

string

Note: this class Note: this class
has no Main()
method!

The NuclearStation class (continued)
public void lowerRods()
{

}

string code;
Console.WriteLine("Danger:Lowering Fuel
Rods");
Console.Write("Enter authorisation code: ");
code = Console.ReadLine();

} // end of NuclearStation
class

if (code == SYSTEMCODE)
Console.WriteLine("CODE CORRECT\nRods now

being lowered");
else

Console.WriteLine("CODE INCORRECT:\nYou
will now be escorted from the building");

