

Object Oriented
Programming

(OOP)

What is Object-Oriented Programming?

 Uses Objects

 OOP programs model 'things' in the real world (objects)

e.g.
— a banking program has to model:
customers, accounts, transactions (cheque, credit card)
— a medical program has to model:
patients, beds, ventilators, drugs, ...
— sometimes we are modelling physical things in the
real world

— at other times the 'thing' doesn’t exist outside the
computer .. a more abstract concept

Classes and Objects

A class is like a plan or template
for real-world objects

Class variables
House Class (attributes)
« address
houseType
age
numberOfRooms

v
NN NN

|:.
|

Any number of objects can be produced from a class

Class variables

Person Class B

occupation

Person dob

Class SexX
address

etc.

Objects are also called instances of the class

Class variables

Circle Class (attributes)
e radius
* fillColour
Circle Class * lineColour
Q * lineStyle
etc.

Class methods

» setFillColour()

» setRadius()

* moveRight()

* moveUp()
etc.

Objects also have methods (functions) that define their
behaviour. methods can do things with the object

Class

— sets of objects share attributes and behaviours

— all students have an id, a name, an address ... and
attend lectures ©

— it is more economical to define a class than to
define everything independently for every object of
that class (generalisation)

Class

— a class is like a type

— think of a class as a template or blueprint

— A designer makes drawings for a car (class)

— A factory can then manufacture individual cars
(objects)

» the blue Ford Focus 1.6L reg. no: YO54 7GD
» the red Ford Focus 2.0D reg. no: SH54 6TR

Object

— an object models (represents) well defined entities
(things)

— an object is an instance of a class

— different objects are given different names (here
derived from the student class)

— studentl, student2, student3, etc.

Object

— an object has attributes
— (c#t fields or instance variables)

— an object has behaviours (c# methods)

— attributes of the object, studentl are:

— id: 12345678

— name: Fred Bloggs

— address: 10 Happy Place, High Wycombe
— sex: male

— behaviours of the object, studentl are:

— attend lecture
— sit exam

Programming with

classes and objects

C# is an OOP language

using System;
namespace Task

{

class MealCosts

static void Main ()

Creating a new Object from the MealCosts Class

MealCosts myMea|s; Define myMeals variable

myMea|s = new I\/IeaICosts(); Creates and initialises

a new MealCosts object

OR
MealCosts myMeals = new MealCosts();

Executing the methods of an object

First Create a new Object

MealCosts myMeals = new MealCosts();

Then you can call any of its methods

myMeals.inputData(); Use the DOT operator

myMeals.calcTotalCosts();
myMeals.outputCosts();

e

* Class >Three Objects (Instances)

TargetBot

List of variablas:

Varl

Var2

Var3 \
objectl object2 object3

Objects are unique instances of a class structure

. Notation

. is otherwise known as the ‘period caller’

Refers to variables and functions from objects

objectName.Varl objectName.Functionl

. Notation

. is otherwise known as the ‘period caller’

Refers to variables and functions from objects

objectName.Varl objectName.Functionl

Examples from Ceebot:
item.category
this.position

Several Fish objects could be generated or
“spawned” from a Fish class, with relevant
variables and functions

Programmlng //
MeaICosts @
Class

UML Class Diagram for a MealCosts Class

This shows all the data(class variables) and methods

MealCosts
double foodCost

_, double drinkCost
athibutes) int daysPerWeek

double dayCost
double weekCost

Main () —LT

inputData ()
calcTotalCosts ()

outputCosts ()

MealCosts Class

class MealCosts

{

double foodCost, drinkCost; Class variables
double dayCost, weekCost; (attributes)
int daysPerWeek;

static void Main ()

{

MealCosts myMeals = new MealCosts() ;
myMeals.inputData(); @.,

&
myMeals.calcTotalCosts () %

} myMeals.outputCosts() ;

void inputData () v myMeals inputData()
{ method is called
string input; // local input variable
Console.Write ("Enter the price of a meal: £");
input = Console.ReadLine() ;

foodCost = Convert.ToDouble (input) ;
Console.Write ("Enter the price of a drink: £");

// etc.

MealCosts Class Methods (continued)

void calcTotalCosts ()

{
dayCost = foodCost + (3 * drinkCost);

weekCost = dayCost * daysPerWeek;

void outputCosts ()
{

Console.WriteLine ("\nYour Final Costing
Results") ;

Console.Writeline ("= =

Console.Writeline ("Total cost for one day = £"

+ dayCost) ;
Console.WriteLine ("Total cost for one week = £"

} + weekCost) ;

") ;

// end of the MealCosts class

Function Called from the Main() Program

static void Main()

{

functionl();

J

static void functionl1()
{

Console.Write(“In functionl1”);

J

Simulator

Dice

variable
(attribute)

Random rand

Main ()
throwTheDice ()
oneThrow ()

-

Define rand as
a Random
object

Definition of Dice cl

_ Note:
class Dice we can control access
{ by making some things

private and others public

private Random rand;

public static void Main()

{
Dice myDice = new Dice();
myDice.rand = new Random() ;
myDice. throwTheDice () ;

other methods

Slide 28

Di

| Definition — (con

public void throwTheDice ()
{

Console.Writeline ("I have thrown "
+ oneThrow()) ;
@
>,

““““ returns a

public int oneThrow () random number

{ ° (1 '6)
return rand.Next (6)+1 ;

// end of Dice class

Ld pd

Lo u T I

W00 =

Flusing System;
using System.Collections.Generic;
using System.Ling;
using System.Text;

Elnamespace DiceSimulator

1
E class Dice
1
private Random rand; //declare a Random wariable called "rand’
E public static woid Main(string[] args)
1
Dice myDice = new Dice(}; [//create a new object from the 'Dice’ class
myDice.rand = new Random(); //generate @ new Random object, associated with the wariable called
myDice.throwTheDice(); flcall the "throwTheDice()" method
E
= public woid throwTheDice()
{ Console.WriteLine(™I hawve thrown a " + oneThrow(}}; //0utput message including walue returned...
//...from "oneThrow()' method
¥
E public int oneThrow()
1
return rand.Next(B)+1; /fuse the Random object to generate a number between @ and 5 (Next(6))
//add ONE to the number generated so that it is between 1 and &
J/RETURN wvalue where it is needed in the "throwThe Dice()' method
¥
¥
b

"rand’

Example Outputs

~

B C\Windows\system32yomd exe

I have thrown a 6
Press any key to continue . . .

B C\Windowshsystem32icmd.exe

I have thrown a 4
Prezs any key to continue

BN C\Windows'system32emd.exe

I have thrown a 2
iFress any key to continue

= B |

Private and Public

private

This word is used to prevent access from

outside the class

» normally class variables are defined as private
e.g. private string choice;

public

This word Is used to make a method available to
the world outside the class
e.g. public void throwTheDice()

Multiple

Dice

Throws

Throw Dice 6 Times? N ‘

// New version of throwTheDice() method

public void throwTheDice6Times ()

 for (int i = 0; i < 6; i++)
{

Console.Writeline ("I have thrown "
+ oneThrow()) ;

} Call the
} oneThrow()

Method
(6 times)

[0, B O W W

W oo o=l M

—lusing System;
using System.Collections.Generic;
using System.Ling;
using System.Text;

—Inamespace DiceSimulator2

1

= class Dice

1

private Random rand; /la

public static woid Main(string[]

1

Dice myDice = new Dice();

myDice.rand = new Random();
myDice.throwTheDice6Times();

¥

public woid throwTheDicecTimes()

1

for{int i=8; i<6; iH+)

1

Console.WriteLine("Throw No.™ + (i + 1) + ™ has

h
¥
public int oneThrow()
1
return rand.Next(s6) + 1;
¥

'"Random’ type wvariable called 'rand' is declared
args)

//a new object is generated from the 'Dice’ class....

//....associated with the variable called 'myDice’

//a new Random cbject is generated, associated with the wariable called 'rand’
//call the '"throwTheDice6Times()' method from below

//set up a FOR Loop to repeat 6 times

+ oneThrow()};

//this method is called & times, each time RETURNing @ new random wvalue

Example Outputs

i

B C\Windows'system32homd .exe I. = | = |_‘K-?_J

Mo.1l was
hrow Mo.2 was
Throw Mo.3 was
hrow Mo.4 was
Throw Mo.5 was
hrow Mo.6 was
ress any key to continue . . .

Mo.1l was
Ho.2 was
Mo.3 was
Ho.4 was
was
was

Ho.1 was
Mo.2 was
Mo.3 was
Mo.4 was
Mo .5 was
Throw Mo.6 was
iIPFress any key to continue . . .

The Constructor

The constructor is a special method in a
class
It always has the same name as the class

When an object is created from a class,
the constructor is automatically executed
It is used to initialise the new object

public Dice()
{

rand = new Random() ;

NN~

This constructor creates
a new Random object,
used to generate random
numbers for the Dice

constructor
method

the new operator

return

 return is used to return a value back from

a method or function
 using void in the method header means

that nothing is returned by this method

 If return is used you must change void to
show the type being returned (e.g. int,
string, double, etc.)

public int oneThrow ()

{ oneThrow() returns a

Return rand.Next (6)+1; random integer value
} .. S0 change void to int

What is the difference between a
class and an object?

The Last Slide

j

Extra Reading

An example
using 2 Classes

* NuclearStation: a class to
control a Nuclear Power

Station
» Test: a class to test this

a Test class (incomplete)

class Test

{

private string choice;
private NuclearStation myStation;

public static wvoid Main ()

{
}

Test myTest = new Test();
myTest.testStation() ;

public Test() // the class constructor

{
}

myStation = new NuclearStation();

public void testStation|() Create new ob

from another cl
{ myStation.display() ;

choice = myStation.getChoice() ;
if (choice == "1")
myStation.lowerRods(); // etc.

NuclearStation class (incEaNeass

has no Main()

class NuclearStation method!

{

private const string SYSTEMCODE "NUKEME" ;

public void display ()

{
Console.Writeline ("Nuclear Winter Station");
Console.WritelLine (" Main Menu ") ;
Console.WritelLine (" 1l: Lower Fuel Rods ") ;
Console.WritelLine (" 2: Raise Fuel Rods ") ;

etc.
}

public string getChoice()
{

string choice;

Console.WriteLine ("What do you want to do?");
Console.Write ("Enter your choice:");

choice = Console.ReadLine() ;

return choice;

The NuclearStation class (continued)

{

public void lowerRods ()

string code;

Console.Writeline ("Danger:Lowering Fuel
Rods") ;

Console.Write ("Enter authorisation code: ");
code = Console.ReadLine() ;

if (code == SYSTEMCODE)
Console.WritelLine ("CODE CORRECT\nRods now
being lowered") ;
else
Console.WriteLine ("CODE INCORRECT:\nYou
will now be escorted from the building") ;

} // end of NuclearStation
class

