CO452 CeeBot Classwork

Task 4_1: Follow Path

Program Description

Program the Wheeled Grabber to reach the platform that you can see in the distance. The path to take is marked out with blue waypoints (checkpoints). These are all 20 metres apart

Program Algorithm

1. Set angle to 90
2. Set distance to 20
3. Move forward by distance units
4. Turn angle by degrees
5. Move forward by distance units
6. Turn angle by -degrees
7. Move forward by distance units
8. Turn angle by -degrees
9. Move forward by distance units

Program Code

Task 1_4: Move an Object

Algorithm
 1. Store 2 in variable a
 2. Store 8 in variable b
 3. Subtract 2 from variable \mathbf{b}
 4. Multiply a by b and store result
 5. Display the result

Program Code

1	// Derek Peacock ID 123456
2	// FD Computing 2018
3	// CO452 Programming Concepts
4	// Week 1 Task 5.3 Follow Path
5	// 09/10/2018
6	
7	int $a=2$;
8	int $\mathrm{b}=8$;
9	
10	int result;
11	
12	$\mathrm{b}=\mathrm{b}-2$;
13	result $=\mathrm{a} * \mathrm{~b}$;
14	
15	message("Results $=$ " + result);
16	

Task 6.3 Step by Step

Program Description

This is another example of moving, but this time you have to use the dialog box to input numbers and also convert them from a string type to a number type. Your WheeledGrabber is at one end of the track and there are mines at the other end, just past a platform .. your destination.

Your task is to reach the platform and survive, by asking the user to input a distance to move, then to move the robot through that distance. If you keep running the program, you should eventually reach your destination.

Algorithm

1. Ask the user to input the distance to move
2. Move forward that distance

Program Code


```
    1 /// Derek Peacock ID 123456
    2 // FD Computing 2018
    3 // CO452 Programming Concepts
    4 // Week 1 Task 6.3 Step by Step
    5 // 09/10/2018
    6
    7 int distance;
    8 string value;
    9
10 value = dialog("Enter the distance to move >");
11 distance = strval(value);
12 move (distance) ;
```


Task 1.6 Power up a Robot

Program Description
Use the Wheeled Grabber to pick up a power cell and drop it on the Winged Grabber
Algorithm

1. Move a distance of 7
2. Grab the power cell
3. Turn 90 degrees
4. Drop the power cell

Program Code

1 // Derek Peacock ID 123456
2 // FD Computing 2018
3 // CO452 Programming Concepts
4 // Week 1 Task 1.6 Power up a Robot
5 // 09/10/2018
6
7 move (7);
8 grab();
$9 \operatorname{turn}(90)$;
10 drop();
11
12

Task 6.4 Think of a Number

Program Algorithm

Algorithm

1. Input any value from the user and convert this to a float number
2. Double this number and store the result separately
3. Add 16 to the previous result
4. Divide the result by 2
5. Subtract the original number from this result
6. Display the final answer

Program Code


```
    // Derek Peacock ID 123456
    // FD Computing 2018
    // CO452 Programming Concepts
    // Week 1 Standard Task 6.4 Power up a Robot
    // 09/10/2018
    string value;
    int originalNumber;
    int currentNumber;
    value = dialog("Enter a number > ");
    originalNumber = strval(value);
    currentNumber = originalNumber * 2;
    currentNumber = currentNumber + 16;
    currentNumber = currentNumber / 2;
    currentNumber = currentNumber - originalNumber;
    message("Answer = " + currentNumber);
!0
```


Task 6.5 Target Practice

Program Algorithm

```
Algorithm
    1. Input the vertical angle (-20 to 20)
    2. convert this to a float number
    3. Input the horizontal angle (-90 to 90)
    4. Convert this to a float number
    5. Aim the shooter
    6. turn the shooter
    7. Fire
    8. Set the aim back to horizontal
    9. Turn back to the starting position
10. Output a message "Ready to fire again"
```


Program Code


```
    // Derek Peacock ID 123456
    // FD Computing 2018
    // CO452 Programming Concepts
    // Week 1 Standard Task 6.5 Target Practice
    // 09/10/2018
    string value;
    float vertical;
    float horizontal;
    value = dialog("Enter Vertical Angle (-20..20) >");
    vertical = strval(value);
    value = dialog("Enter Horizontal Angle (-90..90) >");
    horizontal = strval(value);
    aim(vertical);
    turn(horizontal);
    fire();
    aim(0);
    turn(0);
    message("Ready to fire again!");
```

25

Task 4.3 Using the Radar
Program Algorithm

Programming Concepts CO452

Algorithm
 1. Use radar to find position of a TitaniumOre object
 2. Go to this position
 3. Pick up the object
 4. Use radar to find position of the Converter
 5. Go to this position
 6. Drop Titanium onto Converter
 7. Step back to allow converter to do its job

```
Program Code
```



```
    1 // Derek Peacock ID 123456
2 // FD Computing 2018
3 // CO452 Programming Concepts
4 ~ / / ~ W e e k ~ 1 ~ S t a n d a r d ~ T a s k ~ 4 . 3 ~ U s i n g ~ a ~ R a d a r \|
5 // 09/10/2018
6
7 object item;
8
    9 // Find ore and get it
10
1 1 ~ i t e m ~ = ~ r a d a r ( T i t a n i u m O r e ) ;
12 goto(item.position) ;
13 grab();
1 4
15 // move ore to convertor
1 6
17 item = radar(Converter);
1 8 \text { goto(item.position);}
19 drop();
20 move(-3);
2 1
```


Task 5.5 Drawing Rectangles

Program Algorithm

1. Get the length of the rectangle
2. Convert it to a number
3. Get the width of the rectangle
4. Convert it to a number
5. Change to the blue pen
6. Put the pen down
7. Move the given length
8. Turn 90 degrees
9. Move the given width
10. Turn 90 degrees
11. Move the given length
12. Turn 90 degrees
13. Move the given width
14. Print a message

Input-Output Diagram

showing the user inputs and outputs for the program

List of Variables

Identifier	Type	Meaning
value	string	To get any value from the user
length	int	Length of the rectangle
width	int	Width of the rectangle
angle	int	The angle of one corner of the rectangle

Test Plan
Actual results are left blank at this stage and filled in after the program has been written.

Test No.	Inputs		Expected Outputs		Actual Outputs	
1	Length $=20$	Width $=$ 15	Rectangle 20×15	Message	Rectangle 20×15	Message
2	Length $=10$	Width $=$ 8	Rectangle 10×8	Message	Rectangle 10×8	Message

Program Code

```
// Derek Peacock ID 123456
// FD Computing 2018
// CO452 Programming Concepts
// Week 1 Standard Task 5.5 Draw Rectangles
// 10/10/2018
int length;
int width;
string value;
value = dialog("Enter rectangle length >");
length = strval(value);
value = dialog("Enter rectangle width >");
width = strval(value);
blue();
pendown();
move(length);
turn(90);
move(width);
turn(90);
move(length);
turn(90);
move(width);
message("Rectangle length " + length + " metres and width " + width + "metres completed");
```

