
Original work by Brian Ward

 Programming
 Concepts
 CO452

Study Pack for
Ceebot

Part A
Weeks 1-3

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 2 of 39 Based on the original work by Brian Ward

Contents

Page 3: Introduction and useful things to know

Page 5: An example of how Ceebot works

Page 6: Week 1 Class exercises

Page 9: Week 1 Technical notes

Page 11: Week 1 Independent exercises

Page 14: Week 2 Technical notes

Page 14: Week 2 Class exercises

Page 18: Week 2 Independent exercises

Page 20: Week 3 Technical notes

Page 21: Week 3 Class exercises

Page 25: Week 3 Independent exercises

Page 28: Appendix A: Ceebot information

Page 31: Appendix B: C# (console) information

Page 35: Assessment information and criteria

Page 37: Module plan (provisional)

Learning Outcomes

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 3 of 39 Ceebot Directed Study

 for the Programming Concepts module: CO452

General Introduction

Welcome to Programming Concepts

• The CO452 module plan and method of assessment for this module is detailed at the
back of this booklet, and you will also find the assessment criteria there.
We want you to enjoy this module and achieve a good result. Therefore it is important
that you read the module plan and assessment criteria at your leisure.

• You will need an electronic A4 logbook to record your work. Please get this up and
running as soon as possible. Classwork will be checked and marked each week.

• You start this module by using Ceebot, a highly visual environment for learning
fundamental programming concepts. It uses a C++/C#/Java programming style, so
principles learnt here will transfer easily to other programming areas. Hopefully you will
also find Ceebot fun to use. The first few exercises should be fairly easy, but you will
find that they get more challenging in later weeks. Near the end of the module you will
be introduced to the C# language .Good Luck!

• In the first introductory session you will learn the essentials of working with Ceebot.
Then you will progress by using the most important principles of programming.

• Please Note: There are hundreds of exercises in the Ceebot package. You are NOT
expected to complete them ALL! The exercises that you need to complete will be
explained here in this document. Of course you CAN do the others if you want to!

• For your convenience, the details of each task are summarised for you in this booklet,
but you will also find information by pressing the [F1] key during an exercise. Using the
[F2] key will bring up general support for the current chapter.
 If you wish, you will be able to purchase a copy of Ceebot and the exercises for

your own personal use (for a nominal charge).

On successful completion of the module the student will be able to:

• Analyse a simple requirement in a structured manner in order to
establish a strategy to solve the current problem

• Design, document, implement and test reliable, maintainable
programs as solutions to simple problems

• Use structured techniques of design and implementation and good
documentation practice

Make effective use of software development tools when implementing fit-
for-purpose solutions

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 4 of 39 Based on the original work by Brian Ward

Classwork
Remember, you do NOT have to do all the Ceebot exercises in the package.
The ones you need to attempt are detailed here in this booklet.

You must use the Standard set of exercises. Try others afterwards if you want to.

The first thing to keep in mind is that when you have selected an exercise and it has loaded:

• the [F1] key will always bring up the instructions for the current exercise.
• the [F2] key will always give you more general help with the chapter and the

instructions you may need to use to complete a task..

This week you are to try to complete some tasks in class from the first few Ceebot chapters:
 Ask for help if you need it.

• Show your solutions to your lecturer as you complete them
• Include comments in your code where relevant (ask your lecturer how to do this)
• You should include the following information in comments at the top of each program:

// Programmer’s name: and ID:
// Course:
// Week No: and Exercise No:
// Date:

• Copy your finished code and put this into your logbook with appropriate headings
 (Note .. you can cut and paste into MS Word or WordPad for later printing)

Your Log Book
You need to include the Independent study tasks in your logbook for electronic
submission. These exercises will be marked.

• Put Unit Headings and Task Headings.
• Give a brief description of the task
• Stick in your commented source code solution
• You may sometimes need other documentation such as algorithms or test plans.
• Add brief comments as to your success or otherwise and any problems that occurred

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 5 of 39 Ceebot Directed Study

Ceebot Task 1.1: Landing
This exercise starts with a movie showing your spaceship landing on a hostile alien world.
Once you have landed, you will see a robot shooter in the distance on the planet surface and
2 alien ants that threaten to destroy this robot.

• Your task is to program the robot to destroy the ants using the fire(…); instruction.

• First Click on the robot shooter in the distance, then select its editor (see below)

• The editor allows you to enter programs and compile them

• Type the instruction to
fire the robot cannon
for 1 second

• Then compile the
program to see if there
are any errors

• If errors exist, correct
and try again

Destroying Both Ants

• You will notice that
there are 2 ants! So
you must write the fire
instruction twice

• Your robot should also
turn round through 180
degrees before the
second firing.

• There is a turn(..); instruction that should help.

• Can you put 3 instructions together in one program to finish the exercise?

• Click OK when you have done this

Executing the Program

• You now have to run (execute) this
program by clicking the arrow button

• If you leave it too long, the robot will be destroyed, but don’t worry .. you can always
restart the exercise

• remember you can get more help by using the [F1] and [F2] keys

 Important Notes (saving and restarting)
• When you click OK in the editor, your program is saved automatically

 .. so if you restart it, your old program should not be lost!
• When you restart, you can skip the introductory movie by using the [Esc] key
• You can restart any exercise as many times as you like

An example of how Ceebot works

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 6 of 39 Based on the original work by Brian Ward

Ceebot Task 4.1: Follow a Path (using variables)

Your task
Program the WheeledGrabber to reach the platform that you can see in the

distance. The path to take is marked out with blue waypoints (checkpoints). These are all
20 metres apart.

• Use the editor to create the program.
• You will need to use the move(…) and turn(…) instructions.
• Notice that most programming instructions have brackets. These are called functions.

Inside the brackets you can put a value (called a parameter) and this value is then
passed to the function. In this case the
parameter is the length the robot moves
or the angle it turns.

• It is generally good programming practice
to use variables (quicker to change
values), so start by setting up some
variables for the length and angle:

int len; // length
int angle;

Note: The turn() function will only accept an integer parameter. It uses the angle anti-
clockwise so 90 will turn right; -90 will turn left.

Task 5.3: RoboMaths
Your Task
Implement the algorithm displayed below:

• The final display should look like
this:

The answer is …
• You will need to use the

message(…) instruction for the final
display.
(see your lecture notes or hit the

[F2] key)

Week 1

Sequence, Variables, Input and Output

Class exercises

Algorithm
1. Set length to ??
2. Set angle to ??
3. Move forward using length
4. Turn using angle
5. Move forward using length

etc.

 1

 2

Algorithm
1. Store 2 in variable a
2. Store 8 in variable b
3. Subtract 2 from variable b
4. Multiply a by b and store result
5. Display the result

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 7 of 39 Ceebot Directed Study

Extra
Program the final message display so that it shows the contents of all the variables, like this:

Multiplying ... by ... gives …

Ceebot Task 6.3: Step by Step

This is another example of moving, but this time you have to use the dialog box to
input numbers and also convert them from a string type to a number type. Your

WheeledGrabber is at one end of the track and there are mines at the other end, just past a
platform .. your destination.

Your task is to reach the platform and survive, by asking the user to input a distance to
move, then to move the robot through that distance. If you keep running the program, you
should eventually reach your destination.

• You will need the dialog(..) instruction and also the strval(..) instruction to convert
your string input into a number .. see the start of this unit for details.

• You should also try to input a distance to travel to the platform in one go!
• Unfortunately each time you reset the program, the platform distance will be different!
• Your main algorithm is:

Ceebot Task 1.6: Power up a Robot (use variables)
Notice that you can zoom in and out of a scene, by using the + and - buttons

If
you

zoom onto the WingedGrabber robot you will see that its energy level is zero (shown by the
green indicator). This is because it has no power cell on board.
Your task is to get a powercell to the WingedGrabber using the WheeledGrabber ..

• Click on the WheeledGrabber robot, using the editor to create the program, as in the
previous exercises.

• The following instructions will be useful for this task: (use [F2] for more details)
• move() .. move forward .. the parameter is the distance (use a variable)
• grab() .. picks up any object in front .. it has no parameter
• drop() .. drops the object being carried .. normally has no parameter
• turn() .. the parameter is the angle passed to it .. (use a variable)

• Work out the program algorithm by yourself. [F1] will show a picture of the scene with
some useful distance information.

• When you have been successful, the WingedGrabber will fly off, because it already
has been pre-programmed to do a task of its own.

Note: when the WingedGrabber flies off, you can follow it if you want to .. just click on its
icon at the top left of the screen .. then try zooming and using the camera button too.

Algorithm
 1. input a distance from the keyboard
 2. convert this to a number
 3. move this distance

 3

 4

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 8 of 39 Based on the original work by Brian Ward

Ceebot Task 6.4 (variation) : Think of a number!

Use the algorithm below to write the program:

Now run the program again, entering a different starter value .. what do you notice?
Can you explain why the program works this way?

Ceebot Task 6.5: Target Practice

Your task

• Write a program to input the horizontal and vertical angles and then use these to
destroy one of the explosive targets.

• Your cannon should then be returned back to its starting position, ready for the next
run of the program

Here is an algorithm that should help:

The shooter’s cannon has two settings
that are important:

• the vertical angle set by the
aim(…) instruction (this can be
between –20 and 20)

• the horizontal angle used by the
turn(…) instruction (between –
90 and 90 here)

 6

 5
Algorithm
1. Input any value from the user and convert this to a float number
2. Double this number and store the result separately
3. Add 16 to the previous result
4. Divide the result by 2
5. Subtract the original number from this result
6. Display the final answer

Algorithm
 1. Input the vertical angle (-20 to 20)
 2. convert this to a float number
 3. Input the horizontal angle (-90 to 90)
 4. Convert this to a float number
 5. Aim the shooter
 6. turn the shooter
 7. Fire
 8. Set the aim back to horizontal
 9. Turn back to the starting position
10. Output a message "Ready to fire again"

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 9 of 39 Ceebot Directed Study

Testing the Program
A Test Plan has been partially completed for you.
• Run the program 3 times using the input data for the 3 existing tests and fill in the results.
• Then work out the values for Tests 4 and 5 and run these to complete the testing

Week
1: The
Technical Bit

1. Sequences
The sequence is a very important programming construct.
Basically, a sequence is a group of instructions or statements, where one instruction follows
another in a particular order..
These instructions all end with semicolons and are put inside a set of braces to make what
is known as a block of instructions .. like this:

{
 ----- instruction 1 ;
 ----- instruction 2 ;
 ----- instruction 3 ;
 ----- instruction 4 ;

}

The order of the instructions is very important and the skill of the programmer lies in putting
the correct instructions together in the right order to achieve the task. All the programs you
have written this week are sequences.

2. Algorithms (Pseudocode)
As programs get larger, it is very easy to get the order of the instructions wrong.
Good programmers design their programs before getting down to detailed coding. One of
the techniques used to do this is the algorithm (also known as pseudocode)
An algorithm is just a plan for the program, written in structured english, usually with the
various steps numbered in the correct order.
For example:

1. move 20 metres forward
2. turn 45 degrees right
3. pick up object
4. turn 180 degrees
5. move 10 metres forward
6. drop obect
7. pause for 2 seconds

Shooting Practice
Test Plan
Test Expected Actual
No. Vertical Horizontal Result Result
1 1 7 Target destroyed
2 8 30 Target destroyed
3 -3 -16 Target destroyed
4 Target destroyed
5 Target destroyed

Input Angles

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 10 of 39 Based on the original work by Brian Ward

3. Variables
Often in a program, you want to store some value that may change later on in the program.
Using a variable allows you to do this.

A variable is like a storage box .. you can have many boxes of different sizes … and so you
don’t forget what is in the box, you should give it a sensible name (or identifier)

A variable is a temporary storage ‘box’ in a program. You can use variables to store
numbers, text, etc. (see next page)

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 11 of 39 Ceebot Directed Study

Declaring Variables
Every variable in a program needs to be set up by defining or declaring it before it can be
used. This means giving the variable a type and a name (also called its identifier) :
e.g.
int number ; // defines number as a variable able to store an integer
float wage ; // defines wage as a variable able to store a decimal

 (or floating point) number
string surname ; // defines surname as a variable able to store a string of characters
object item ; // defines item as a variable able to store object details
boolean found ; // defines found as a variable that can only be true or false

Assigning Values to Variables
Variables can be assigned values using the = operator
e.g.
 number = 204; // stores 204 in the number variable
 wage = 20.25; // stores 20.25 in the wage variable
 surname = “Tita”; // stores Tita in the surname variable
 wage = wage * 2; // changes the number stored in wage to 40.50
 wage = number + wage + 10; // stores 254.50 in the wage variable (204+40.50+10)

All of the above are examples of assignment statements

Output
Often you want to output information to the screen. In Ceebot this is done using the
message(…) instruction .. this will print a message box onto the screen .. it will disappear in
a few seconds. Here are some examples:

 message("Hello Everyone");
 message("My name is " + firstname + " and my age is " + age);

Notice you use "quotes" for strings of characters, but not for variables
Notice how the + operator is used to join strings and variables together into one message.

Input
You can also input information from the keyboard during a program. To do this you use the
dialog(…) instruction. You will need to set up a string variable to store the input. e.g.

 string input; // set up a string variable called input
 input = dialog("Where do you live?"); // input words from the keyboard

Notice the dialog(…) instruction has a string parameter .. this is a prompt to the user and
appears in a dialog box on the screen.

Note that if you want to input a number to be used later in the program, you will have to
convert the input string to a number .. you can use strval(…) to do this. e.g.

 string input; // set up a string variable called input
 int number; // set up an integer variable called number
 input = dialog("How many Targets can you see?"); // input from keyboard
 number = strval(input); // convert input to a number

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 12 of 39 Based on the original work by Brian Ward

 Ceebot Task 3.4: Production Chain (use variables)

In this scene, you can see a WingedShooter with no power cell. There are NO
working power cells nearby and no Titanium cubes either!

• there is a Converter and this is able to convert Titanium Ore into Titanium Cubes.
• then the Power Cell Factory can finish the job by producing a power cell from the

Titanium cube.
Your task

• Program the WheeledGrabber to pick up the Titanium Ore and deposit it onto the
Converter. The Converter will take about 15 seconds to make a Titanium cube .. and
you will have to move out of the way to let it do its job.

• Then take the cube to the PowerCell Factory … after the Power Cell has been created
(about 5 seconds) you will need to install it in the WingedShooter like you did before.

• You will need to plan these steps carefully in order to succeed.
• Note that all the objects are 3 metres from your current robot position
• You should use variables for your solution, where possible.

 Ceebot Task 4.3: Using a Radar
Your task is to bring TitaniumOre to the Converter so it can be converted into a
Titanium cube. Every time you reset this task, the Ore is in a different place! To
find it, use the robot’s radar.

• The radar represents the "eyes" of a robot. It is used to detect objects around it, even
when they are hard to see. The parameter of the radar instruction is the object
category to be detected and the radar’s results are stored in an object variable.

• We can declare an object variable like this:
 object item; // item is now an object variable
• Then we can use the variable to detect an object, like this:
 item = radar (TitaniumOre); // detect the closest TitaniumOre object

item now holds all the information about the object

Week 1: Independent Study (4 Tasks)

The following exercises will be marked. Attempt them
outside of class, and copy your code, as well as
screenshots, and algorithms into a logbook. In week 5
you will be required to submit this logbook electronically

 7

 8

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 13 of 39 Ceebot Directed Study

• Use the goto(…)
instruction to go to the
item position like this:

 goto(item.position);

Use all this new information
to complete the task, using
this algorithm to help you:

Ceebot Task 5.5: Draw Rectangles

Your task is to write a program where the user is asked what length and width they require
for to draw a rectangle. The program should then try to draw the required rectangle.
So a typical execution of the program could look like this:

What length (in metres) would you like for the rectangle?
2
What width (in metres) would you like for the rectangle?
3

At the end of the program a message should be displayed saying:

Rectangle of length 2 metres and width 3 metres completed.

Testing
Create a proper test plan for your program with at least 3 tests .. then test your program
using your plan

You should do this task in 3 stages:

• First work out the algorithm steps in normal english
• Code the program and get it to work
• Test the program using your test plan

You should put algorithm, code and completed test plan for the program into your log book

Ceebot Task 5.2: Target Buster 2
There are two targets out there, but you don’t know where they are. Again you
can use your radar to find them.
• The category to use as parameter for the radar is TargetBot.

Your task is to find and destroy the two targets.

• However, you mustn’t get too close to the explosive target or your robot will be
destroyed and you won’t get a chance to fire.

See Next page for a possible algorithm

10

 9

Algorithm
1. Use radar to find position of a TitaniumOre object
2. Go to this position
3. Pick up the object
4. Use radar to find position of the Converter
5. Go to this position
6. Drop Titanium onto Converter
7. Step back to allow converter to do its job

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 14 of 39 Based on the original work by Brian Ward

• One possible algorithm to use would be this (to be done twice):

 New Information and instructions you need
• Position details for objects and robots can be stored in point variables .. for example:

 point botpos; // declare a point variable called botpos
 point targetpos; // declare a point variable called targetpos

 botpos = this.position; // store robot (this) position
 targetpos = item.position; // store target position (after radar used)

 The distance(… , …) instruction

• Distance can be calculated using the distance(…) instruction. It has 2 parameters
and calculates the distance between 2 points. For example:

 dist = distance (botpos, targetpos); // calculate distance between 2 points
(n.b. dist must first be declared as a float variable)

 The direction(…) instruction

• Direction or angle can be calculated using the direction(…) instruction. This has one
position parameter and works out its angle from the robot.
You can then turn using this direction: For example:

 turn(direction(targetpos)); // turn in the direction of the target position

 Now put all this together to finish the task and put the code in your logbook

Algorithm (copy twice)
1. Use radar to find TargetBot details
2. Store target's position
3. Store robot's position
4. Calculate distance from robot to target
5. turn towards target
6. Move robot to a safe firing distance (within 15 metres)
7. Fire for 1 second
8. Pause to ensure target destroyed

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 15 of 39 Ceebot Directed Study

There is often a need to repeat programs or parts of a program. This is known as iteration
(another word for looping). This week we shall look at 3 methods of looping:

The for loop
The for loop used when we know how many times we want to repeat a block of statements.
There are 3 parts to the statement: initialisation, condition and increment. The following will
repeat 10 times:

The while loop
The while loop continues to repeat a block of statements while some condition in brackets
remains true. The while loop uses a variable as a loop counter, keeping a count of how
many loops have been done. The following repeats 10 times:

Week 2

Iteration

int count ; // declare loop counter

for (count=0; count < 10; count++)
{
 // ---- put instructions to be repeated here
}

int count = 0; // initialise loop counter to zero

while (count < 10) // continue while count less than 10
{
 // ---- put instructions to be repeated here

count++; // add 1 to loop counter
}

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 16 of 39 Based on the original work by Brian Ward

The do while loop
The do .. while … loop is different from the while loop as it always executes the block of
instructions at least once because the condition is checked at the end of the loop.

 Ceebot Task 7.6: Calculator 2

Your task is to use a for loop to input 4 numbers. When the loop has finished,
output the total of the 4 numbers

• You will need to use the dialog(…) and strval(…) instructions as well as the

message(…) instruction to output to the screen.
• And, of course, you will need a for loop.
• Note: your input prompts should look like this:

 Enter Number 1
 Enter Number 2

etc.

Testing
Design a suitable test plan for your program, with at least 3 different tests.

Extra
Can you also display the average (of the numbers entered) in the same message as the
total?

 Ceebot Task 7.2: Massacre

Your task is to destroy the 10 spiders that surround you.

• As there are 10 spiders you need a loop that repeats 10 times.
• Before you start, you will need to set up the variables you need.

• A suitable algorithm for

the program is:

• You should note that the
spiders have conveniently
arranged themselves 15
degrees apart.

Extra
Now also get the program to display a message after each firing:

 "Spider 1 Destroyed" etc.

 2

Algorithm
 1. Loop 10 times

a. fire cannon for 0.1 seconds
 b. turn to next spider
 c. pause for 1.5 seconds
 End Loop

 do
 {

// ---- put instructions to be repeated here
 }
 while (condition); // while the condition is true

 1

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 17 of 39 Ceebot Directed Study

Ceebot Task 11.3: Shooting Practice
Your task: Using one series of statements, destroy all of the targets

Hint
Using nested loops is the most efficient way. Create a loop (the inner loop) that destroys
one side of targets, and then repeat that loop 4 times (the outer loop) turning after each side
is destroyed.

 Ceebot Task 7.3: Blasted Ants
This exercise uses an infinite loop to destroy all the attacking ants. First set
up a while loop with true condition .. this makes the loop continue forever!

• Inside the loop you need to keep firing as you turn your robot. Try using fire() and
turn() .. it doesn’t work. You can turn or fire, but not both at the same time!

• What you need is a new instruction: drive(..) .. which has 2 parameters, the speed
and the direction of turning (both can vary from -1 to +1)

• drive(0, 1); will starts the robot turning on the spot in an anticlockwise direction ..
other instructions such as fire(..); will still work as the robot turns.

• Put all this together to create your program

Extra: Can you do another program that uses your radar to detect the ants before firing?

Ceebot Task 12.1: Testing, Testing!

Power Cells are not what they used to be! You have been asked to design a test
program for them that can be run in a loop any number of times.

Your task:
Put together a sequence of robot instructions to run in a loop. Your test sequence should
have a few movements, turns and firing. An example is given in the algorithm below. The test
will use up energy from the power cell and you can then display this energy level (how?...
see the note below)

• Start the program by asking the user to input how many tests are to be run
• then use a while loop to run that number of tests.
• You should output messages at the beginning and end of each test:

Starting Test 1 (etc.) and
Finished Test 1: Energy Level = …… (etc.)

 5

 4

 3

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 18 of 39 Based on the original work by Brian Ward

A partial algorithm for
the program is:

Note:
energyCell.energyLevel
gives the current level of
the power cell.

When the program is
working, test both
robots to see which
uses most energy for the
same number of tests.

Algorithm (partial)
1. Set counter to zero
2. Input the number of tests to run
3. Loop while counter < number of tests
 a. output starting test message

 move forward 3 metres
 turn 180 degrees
 fire for 0.5 seconds
 move back 3 metres

 b. output finish test message
 c. output current energy level of power cell
 d. add 1 to counter
 End Loop

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 19 of 39 Ceebot Directed Study

 Ceebot Task 8.4: Exchange Posts 2
This exercise uses Information Exchange Posts which store information
that can be picked up by any robot within 10 metres. Your robot is on a very
dangerous path through a lava lake. You may just be able to see your goal

on the right .. a tall Lightning Conductor in the distance across the lake.

Your task .. reach the goal destination without falling into the lake!
But how can you know what direction to take and how much to move your robot?

• This information is stored in each of the 9 Exchange Posts.
• If you click on one of these you will see that it stores a Number, a Direction and a

Length. Each Exchange Post tells you how to get to the next one.
• There are 9 Exchange Posts altogether so use an appropriate for loop for this.

Program Guidance
What must you do inside the loop?

• You need to receive the Direction and Length information from an Exchange post.
• Then use turn(…) and move(…) with these received values.

How do you receive the information?.
• First set up two float variables to hold the information ..

float dir; // declare variable to hold direction
float dist; // declare variable to hold distance

• then use the receive(…) instruction twice …
 dir = receive("Direction"); // pick up Direction info from Exchange Post

 dist = receive("Length"); // pick up Length info from Exchange Post

Design an algorithm for the program. Then use it to produce a working program

Note: Speed up your program using x2 or x3 buttons. Fly the astronaut to watch the action.

 6

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 20 of 39 Based on the original work by Brian Ward

 Ceebot Task 8.1: Flying Shooters
In this scene there are 10 WingedShooter robots .. troops that are
programmed ready to fly off to attack the large nest of ants in the distance.
If you look at the minimap at the bottom right hand corner of the screen, you

will see stars representing all the ants.

Your task
equip all robot troops with PowerCells so they can fly off to get the job done.

• As there are 10 robots, you should use a while loop to repeat your actions 10 times,
although you may not need all of the shooters.

• Although the WingedShooters are waiting patiently in a line, the PowerCells are
scattered around the scene. You will have to use your radar to get the position of
each PowerCell.

• You can then use the radar again to find the nearest WingedShooter to put it in.
• Here is an algorithm

to help you:

Now translate this
algorithm into a working
program

Note: If you wish, you can
click on the other robot at the
top left of the screen and
watch the action at the nest!

Ceebot Task 8.6: Loop the loop
Your task: Using a nested loop, draw 3 squares which increase in size to
pass through the Checkpoints. The lengths of the 3 squares will be 10, 15 and

20 meters. Draw the squares in the colour blue.

Hint
You’ll need to modify the length of which you move in the inner loop, after a square is drawn.
It would be a good idea to set up a variable to store and refer to the modified length.

Week 2: Independent Study (4 Tasks)

The following exercises will be marked. Attempt them outside of class,
and copy your code, as well as screenshots, and algorithms into a
logbook. In week 5 you will be required to submit this logbook
electronically.

 7

Algorithm
 1. Set count to zero
 2. Loop while count less than 10

 a. Use radar to get PowerCell details
 b. go to this position
 c. pick up Power Cell
 d. Use radar to get WingedShooter details
 e. go to this position
 f. drop Power Cell
 g. add 1 to count

 end Loop

 8

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 21 of 39 Ceebot Directed Study

Ceebot Task 15.1: Zig-Zag

Your Task
You have to reach the GoalArea at the end of the path without being destroyed

by the mines along the way. You will see that the path you must take is marked out for you.

Hints

• First turn 45 degrees to face in the right direction
• Then use a do while loop that continues until you reach the GoalArea.

o You can use your radar to detect the GoalArea
o then work out the distance to it.

• Continue the loop until you are just 1 metre away from the GoalArea.
• You will need to move in 7 metre steps
• You will need to turn 90 degrees at the end of each step (but not in the same

direction!)

Ceebot Task 12.7: Ant Attack
Your Task is to use the LeggedShooter to destroy the AlienAnts. You can see
them marked on your mini-map at the bottom right corner of the screen.

Program Guidance
• The ants will attack from all angles .. but there is

a blue WayPoint in the distance marking a good
place to position your robot and make your stand.

o So start by using your radar to detect
the WayPoint and go to it.

• Then you will need to use your radar again to detect
an AlienAnt and then turn and fire to destroy
it. Remember that null will be returned if nothing
is detected.

• As there are many ants, you will need
to do this in an indefinite loop

• Here is an algorithm to help you:

Extras

1. You may find that you could run out of
ammunition by firing when the ant is
too far away. Alter the radar instruction
to detect only ants within, say, 40
metres.

2. You are wasting ammunition by firing
when the ant is too high. Find a way to
fire only when the ant is about level

 Hints for 2
• the z coordinate is the height above sea level
• this.position.z is the z coordinate of the robot
• item.position.z is the z coordinate of an object (item) detected by radar.

(note: altitude can’t be used here because it is the height above ground: zero in this case)

 9

10

Algorithm
1. Use radar to detect WayPoint
2. Go to the WayPoint
3. Loop indefinitely
 a. Use radar to detect AlienAnt
 b. if Ant detected
 i. turn towards the Ant
 ii. fire
 iii. pause briefly
 End Loop

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 22 of 39 Based on the original work by Brian Ward

The Technical Bit
Selection is the third important programming construct, along with Sequence and Iteration

1. Selection using if(…)
There is often a need to make choices in a program, so that the program will perform some
actions(once) if a certain condition is true.
This is programmed using the if(…) instruction. Example:

In this example, when the program reaches this section of code, it will perform the block of
instructions inside the braces { } … but only if the condition (count less than 10) is true.
Otherwise it will just carry on with the rest of the program.

2. Selection using if (…) else …

This time the block of instructions inside the first braces { } is done only if the condition
(count less than 10) is true. If the condition is false, the else set of instructions is done.

Week 3

Selection

 if (count < 10) // if count less than 10
 {
 // ---- put instructions here to be done once if the condition is true
 }

 if (count < 10) // if count less than 10
 {
 // ---- put instructions here to be done once if the condition is true
 }
 else
 {
 // ---- put alternative instructions here to be done once if the condition is false
 }

 1

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 23 of 39 Ceebot Directed Study

Ceebot Task 9.1: Spare Me!

Here we have a shooting exercise with 6 targets to destroy. The targets are 5 metres apart
… but .. oops .. the astronaut is in one of the target positions!.
Your task:
Use a for loop to destroy the targets, but avoid the third position by using an if(…)
instruction.

• Normally, the robot will move forward, turn, fire, and then turn back.
• This would be repeated 6

times.
• But now we should only do this

if we are not at the third
position.

A suitable algorithm for the program
is shown here:

Extra
Devise another method of tackling the
same exercise. Press [F1] for a
second algorithm.

Ceebot Task 9.2: Spare Two

Oh dear, this time there are 2 positions to be avoided .. positions 2 and 5 have
engineers working away. Don’t shoot them!

Your task:
Use a for loop to destroy the targets, but avoid the second and fifth positions, using ONE
if(…) instruction.

• Because there are now two conditions to use in the if statement we can combine
them using the && operator (AND) .. see below.

• You could also use the || operator (OR)
• Design a new algorithm for your program and get it to work

Examples using && and || operators
 if (count > 0 && count <=10)
 {
 // do something if both conditions are true (count > 0 and count <=10)
 }

 if (count == 1 || count == 8)
 {
 // do something if either condition is true (count == 1 OR count == 8)
 }

Algorithm
 1. Loop 6 times
 a. move forwards 5 metres.
 b. if we are NOT at position 3
 i. turn left 90 degrees.
 ii. shoot.
 iii. turn right 90 degrees.
 End if
 End Loop

 2

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 24 of 39 Based on the original work by Brian Ward

Ceebot Task 9.4: Power Up?

There are 6 WingedShooters ready to fly .. some of them have no power cells
while others need their power cells replacing. So there are two different situations

to deal with .. a suitable case for an if … else … statement.
Your task:
Use a for loop with an embedded if .. else .. statement .

A partial algorithm is shown here:

Your first step should be to complete this
algorithm:

• Note which robots have no cells at
all and which need their cell
replacing.

• Then work out what the condition
should be for the if statement (you
may need to use || operators)

• work out the steps needed to
supply a new cell

• work out the steps to replace a cell

Note: the power cells on the ground are all 3 metres apart

Ceebot Task 7.6: Calculator 2 (Extension)

Your task: Extend your code from last week so that the program validates what
the user inputs, only allowing numbers. If the data the user enters isn’t a number,

the program should output a message saying that this input isn’t a number.

The idea here is to stop the program from crashing (or an error) if a wrong type of data is
entered, and also offer the user a chance to re-enter a number.

Hint: write a do while loop, with an if statement inside that tests whether the input is a
number. Also pay attention to what strval() returns when trying to convert non-numerical
data to a numerical format…

Test the program by trying to input a letter, or a word, or a symbol, and see whether your
validation code prevents the program from crashing.

 3

Algorithm (part completed)
1. Loop 6 times
 a. if (condition)
 ... supply a new cell
 else
 ... replace existing cell
 end if
 End Loop

 4

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 25 of 39 Ceebot Directed Study

Ceebot Task 10.6: Invisible Enemy Attack 2
You have just arrived on a Spaceship and your WheeledShooter robot is keen to
get home to your village in the distance. This looks like a peaceful scene but your
robot senses danger and stops!

Your task 1:
• Program your robot to move the 80 metre distance to the village.
• Run the program and the danger should then become all too clear.

Your task 2:
• Now your task is clear .. to reach home after getting rid of the sneaky enemy invaders

along the path. Fortunately they always appear in the same positions (see below)
• You will need to turn() and fire() in a similar way to previous exercises but note that the

move() instruction has to finish before you can do anything else .. so what do you do?
• One solution is to move your robot in smaller chunks .. for example 5 metres at a time .. if

you do this 16 times you will reach the home village (80 metres away) and you can turn
and fire if necessary (note: firing for 3 seconds is advisable to destroy some robots!)

• So program a while loop that repeats 16 times
• Inside the loop you can:

o move 5 metres
o use if statements to check your position and fire if necessary (see below)
o Note that some robots are to the left and some to the right!

Enemy Positions
• The enemy robots appear at 15, 30, 35, 45, 55 and 65 m. along the path
• These are positions 3, 6, 7, 9, 11 and 13 .. if moving 5 m. a time and using a loop counter

Ceebot Task 10.3: To Be or Not to Be?

This scene looks familiar , with 10 possible target positions, but each time you
reset the program the target positions will be different. We are going to tackle the

program differently by asking the user whether to fire or not.
Your task:
You are to destroy all the Targets while avoiding the engineers and their Titanium cubes.

• The target positions are each 5 metres apart, so you must use a for loop to move
your robot forward 5 metres at a time.

• After each move, you should use the dialog(…) instruction to ask :
 "Destroy (y/n)?"

• If the input answer is "y" the necessary instructions are performed to destroy the
target, otherwise it is left alone.

Note: targets should be destroyed for any of the following : "y" , "Y", "YES" or "yes"

Extra
1. You must output a message to the screen after each firing saying how many Targets have
been destroyed so far.
2. You must also output messages showing the result of each action:
 e.g. either Target 3 Destroyed or Target 3 Avoided

 6

 5

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 26 of 39 Based on the original work by Brian Ward

Ceebot Task 9.7: Roll Call 1

You have 10 WingedShooter troops lined up in front of your robot, 5 metres apart
.. but some of them are sick. As your robot moves forward to take the roll-call,
they will either move onto their platform and report for duty or fly off to sick bay!

Note that the situation is different each time you reset the exercise!

Your task:
You are to count up how many of your troops are sick and how many are fit for duty.

• Start by programming a loop where your robot just moves forward 5 metres at a time
along the row of troops.

• You will see the troops coming forward or flying off, but how can you count them?

Program Guidance

• You can use your radar() instruction to help you:
 item = radar (WingedShooter, -90, 10);
 it will send a narrow (10 degree) beam to the right of your robot (-90 degrees)

• If you modify this :
 item = radar (WingedShooter, -90, 10, 0, 6);

the beam will only detect between 0 and 6 metres away. This will detect troops that
moved forward to the platform, ignoring the ones that flew off!

• If the radar doesn’t detect anything, it returns a null value, so we can do either this:
if (item == null) // this robot flew off sick
{
}

 or this:
if (item != null) // this robot reported for duty
{
}

Algorithm
You need to put all this together …

• count up how many are sick and
how many have reported for duty.

• Add 1 to appropriate counters
within the loop.

• Use message() instructions to
show your counts at the end.

 Here is a partial algorithm to help.

To finish the task

• The robot’s battery is very weak.
• There is a PowerStation nearby,

so add some more code at the
end of your program to do this :

o Use your radar to find the PowerStation
o Just go there and your robot will automatically start recharging

Extra
Notice that all the robots have names. Can you display the name of each fit robot in a
suitable way as you count them (n.b. item.name has this information after the radar is used)

 Example message: Robot <Brian> Counted!

 7

Algorithm (part solution)
 1. Set counter to zero
 2. Loop 10 times
 a. move forwards 5 metres.
 b. pause for 1 second
 c. use radar with limited range
 b. if NO WingedShooter detected
 i. add 1 to counter
 end if
 End Loop
 3. Display counter value

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 27 of 39 Ceebot Directed Study

 Ceebot Task 5.5: Draw Using Variables
(a further modification)

You should already have a program that will draw rectangles of any size and length, inputting
the lengths required. But there is a problem .. what happens if the length and width are too
big? Try it .. the robot hits a barrier and blows up!

Your task
Modify your existing program (exercise 10 from week 1) so…

• the user is asked what length and width they require for the rectangle
• the program only draws a rectangle if the length and width are in the right range

(maximum 23 metres) and a message is displayed saying:
Rectangle of length <…> metres and width <…> metres completed.

• If the value input is wrong a suitable message is displayed:

 Length is too big
 or Width is too big

Testing
Create a new test plan for your program and test it using the following inputs:

Length Width
 30 30
 20 20
 30 20
 20 30
 23 24
 24 23
 24 24
 23 23

Does the program always behave as you expected? This testing should reveal any problems
at the boundary value (23). You may have to adjust your program as a result of this testing.

• You should put algorithm, code and completed test plan into your log book.
• Add a comment about the testing that you did and any program changes needed.

Week 3: Independent Study (4 Tasks)

The following exercises will be marked. Attempt them outside
of class, and copy your code, as well as screenshots, and
algorithms into a logbook. In week 5 you will be required to
submit this logbook electronically.

 8

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 28 of 39 Based on the original work by Brian Ward

 Ceebot Task 9.6: Alien Destruction
In front of you is a row of TargetBots and AlienEggs. After a few moments, the
eggs will hatch into either AlienSpiders or AlienAnts and some of the ants can
be very aggressive!

Your task
Use your WheeledShooter robot to get rid of the aliens without destroying the Targets.
Each time you reset this exercise, the situation is different so you can’t necessarily know
where the aliens will be.

Program Guidance

1. There are 20 objects altogether (TargetBots and eggs) so it is sensible to use a for
loop to repeat 20 times.

2. The objects are positioned 5 metres apart, so you should program your robot to move
this distance inside the loop.

3. You can use your radar to help you detect a TargetBot and then avoid all these
positions.

Hint:
• In an earlier exercise of this unit (Roll-Call 1) you learned how to point your radar to

the right ….
item = radar(TargetBot, -90, 5);

 will use a narrow (5 degree) radar beam pointing to the right.
• Note that item will be null if nothing is detected.

Algorithm
One possible design for your program could be:

Code this algorithm and get it to work.

Extra
There is another problem .. your PowerCell may not always last to enable you to destroy all
the aliens.

• but there is a PowerStation nearby which will recharge your cell if you just go there.
• use your radar to get its position in the normal way.
• you should regularly check your PowerCell energy (energyCell.energyLevel) .. if this

is below 0.3 you should go off and recharge it at the PowerStation.
• How can you then return to your previous position?

Put your algorithms and code into your logbook.

 9

Algorithm
 1. Loop 20 times
 a. use radar directed right to detect TargetBot
 b. if TargetBot not detected
 i. turn right
 ii. fire
 iii. turn back
 end if
 c. move 5 metres forward to next position
 end loop

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 29 of 39 Ceebot Directed Study

Ceebot Task 12.2: Testing 2
In the previous exercise (exercise 12.1 in last week exercise 5), power cells can
sometimes run down completely during a test. You need to stop this from
happening.

Your task:
• Modify the previous program (you’ll need to complete exercise 12.1 first) so that it

stops when the energyLevel reaches a low level (0.2). It should also stop, as before,
when the required number of tests is done.

• So you will need to put 2 conditions at the start of the while loop (see the note below)
• At the end of the test loop, you should output 2 more messages:

o output how many tests were completed out of the number required
o output a message saying whether the powercell failed or passed the tests (it fails

if the number of tests completed is less than the number required to be done)

e.g.:
 OR

Note: You will need to use && or || logical operators (which??) to combine 2 conditions.

Ceebot Task 25.1 : Nascar 1

For this task you have to program a racing car to drive round an oval track marked
out with Barriers. Basically you need to prevent the car from hitting any barriers!

Some Hints
1. You need an infinite loop
2. Inside the loop, use the drive()

instruction with 2 variables for the bot speed
and bot direction
e.g drive(botspeed, botdirection);

3. Use a brief wait(0.01) after the drive()
instruction to allow some movement to take
place

4. A botspeed of 1 gives maximum speed, 0 minimum
5. A botdirection 0 is straight ahead, 1 is maximum left and -1 is maximum right
6. Use radar() to detect a Barrier and change the botdirection if necessary

 e.g. item = radar(Barrier, -30, 30, 0, 20); // detects front right up to 20 metres away

Press the [F1] key to see more information and a possible algorithm
Note .. To start nascar programs you click a different button - bottom right.

Document your attempt (even if it’s not finished) in your logbook.

If you have some success, you could try your code in the Nascar 2 and Nascar 3
exercises (Although this is optional – you won’t be required to submit Nascar 2 or 3)
Hint: You may need to add code to avoid hitting other WheeledRacer robots!

11

10

3 tests completed out of 5
Power Cell Failed Test

4 tests completed out of 4
Power Cell Passed Test

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 30 of 39 Based on the original work by Brian Ward

Appendix A: Examples of Important Ceebot Instructions

1. Ceebot Specific
 move (20); .. move 20 metres
 turn(180); .. turn 180 degrees anticlockwise
 wait(1.5); .. wait for 1.5 seconds
 fire(2.5); .. fire cannon for 2.5 seconds
 aim(10); .. aim cannon 10 degrees up (use values from -20 to +20)
 grab(); .. grab the item directly in front
 drop(); .. drop the item being carried
 pendown(); .. put the pen against the floor ready for drawing
 penup(); .. lift the pen to stop drawing
 red(); .. select a red pen for drawing (various colours available)
 drive(1, 0); .. drive forward at full speed
 jet(1); .. fly upwards at full speed (use values -1 to +1)

2. Input and Output
 name = dialog("Enter Name"); .. show dialog to input name and store it in name variable
 message("I am " + name); .. output a message with text joined to a name variable
 num = strval (dialog("Enter number")); .. enter string and convert to its number value
 item = radar(WheeledShooter); .. get details of the nearest WheeledShooter robot
 keypushed(VK_UP); .. detects pressing of a key (e.g the UP arrow key) .. used with if()

3. Variables
 int count; .. define a variable called count to store an integer number
 float num; .. define a variable called num to store a float (decimal) number
 string name; .. define a variable called name to store a string (text or words)
 object item; .. define a variable called item to store an object’s details
 point here; .. define a variable called here to store a position (x and y)

4. Assignments to Variables (must be defined first)
 count = 0; .. put 0 into the count variable (previously defined as int)
 num = 5.67; .. put 5.67 into the num variable (previously defined as float)
 name = "Fred Bloggs"; .. put these 11 characters in the name variable (defined as string)
 here = this.position; .. store current position of robot in the here variable (a point)
 angle = direction(item.position); .. find angle of item from you (after using radar)
 dist = distance (item.position, this.position); .. find distance from item to your position.

5. Calculations
 count ++; .. add 1 to the value of the count variable
 count --; .. subtract 1 from the value of the count variable
 count = count + 3;.. add 3 to value of the count variable (or use count += 3;)
 count = count - 6; .. subtract 6 from the count variable (or use count -= 6;)
 av = (num1 + num2 + num3 + num4) / 4; .. work our average of 4 numbers
 tax = bill * 17.5 / 100; .. work out 17.5 percent tax on your bill

6. Loops (iteration)
 a. The while loop int count = 0; // initialise a loop counter to zero

while (count < 10) // continue while loop counter is less than 10
{
 message (“The count is " + count); // repeated message
 count ++; // keep loop going by adding 1 to counter
}

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 31 of 39 Ceebot Directed Study

 b. The for loop

 c. The do while loop

7. Selection
 a. The if statement

 b. The if else statement

// initialise loop counter; continue while count less than 10 ; add 1 at end of loop

for (int count = 0; count < 10; count ++)
{
 message (“The count is " + count); // repeated message (10 times)
}

int count = 0; // initialise a loop counter to zero

do
{
 count ++; // keep loop going by adding 1 to loop counter

message (“The count is " + count); // repeated message
}
while (count < 10); // continue while loop counter is less than 10

int count = 0;

while (count < 10)
{
 if (count == 4) // if count is equal to 4
 {
 message (“We are half way");
 }

 count ++;
}

 if (count >= 4) // if count is greater or equal to 4
 {
 message (“We have reached half way");
 }
 else
 {
 message ("We are NOT half way yet");
 }

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 32 of 39 Based on the original work by Brian Ward

 c. The switch statement

8. Conditions
 (a == b) .. a is equal to b ?
 (a > b) .. a is greater than b ?
 (a < b) .. a is less than b ?
 (a >= b) .. a is greater or equal to b ?
 (a <= b) .. a is less than or equal to b ?
 (a != b) .. a is NOT equal to b ?

 (a == b || a == c) .. a is equal to b OR a is equal to c ?
 (a == b || a == c || a == d) .. a is equal to b OR a is equal to c OR a is equal to d ?

 (a == b && a == c) .. a is equal to b AND a is equal to c ?
 (a <= 100 && a >= 0) .. a is less than or equal to 100 AND a is greater or equal to 0 ?

9. Functions

 // this defines a function called myFunc which has no parameters and returns nothing (void)
 // to use it, you 'call' it using its name : i.e. myFunc();

10. Functions with parameters

// this defines a function called Tax which has 1 parameter and returns a float value
// to use it, you can 'call' it like this: vat = Tax(Bill);
// this passes the Bill value into the function and picks up the returned tax value from it.
([F2] key for more)

 switch(count) // use count value to switch to various cases below:
 {
 case 1: // i.e. if count value = 1
 message (“We are just starting"); break;
 case 2: case 3: case 4:
 message (“We are on our way"); break;
 case 4:
 message (“We are half way"); break;
 default:
 // do nothing for any other values
 }

 void object::myFunc()
 {
 message ("I am now inside the myFunc function");
 }

 float object::Tax(float amount)
 {
 float taxAmount; // local variable

taxAmount = amount * 17.5/100;
return taxAmount;

 }

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 33 of 39 Ceebot Directed Study

Appendix B: The Basics of C# (Console)

1. Input and Output
 name = Console.ReadLine(); .. store input in a name variable (defined as
string)
 Console.WriteLine("I am " + name); .. output a message with text joined to a name
variable
 num1 = Convert.ToDouble (Console.ReadLine()); .. enter string and convert to a
double
 num2 = Convert.ToInt32 (Console.ReadLine()); .. enter string and convert to an integer

2. Variables
 int count; .. define a variable called count to store an integer number
 double num; .. define a variable called num to store a double (decimal) number
 string name; .. define a variable called name to store a string (text or words)

3. Assignments to Variables (must be defined first)
 count = 0; .. put 0 into the count variable (previously defined as int)
 num = 5.67; .. put 5.67 into the num variable (previously defined as double)
 name = "Fred Bloggs"; .. put these 11 characters in the name variable (defined as string)

4. Calculations
 count ++; .. add 1 to the value of the count variable
 count --; .. subtract 1 from the value of the count variable
 count = count + 3; .. add 3 to value of the count variable (or use count += 3;)
 count = count - 6; .. subtract 6 from the count variable (or use count -= 6;)
 av = (num1 + num2 + num3 + num4) / 4; .. work our average of 4 numbers
 tax = bill * 17.5 / 100; .. work out 17.5 percent tax on your bill

5. Loops (iteration)
 a. The while loop

an infinite loop

int count = 0; // initialise a loop counter to zero

while (count < 10) // continue while loop counter is less than 10
{
 Console.WriteLIne (“The count is " + count); // repeated
 count ++; // keep loop going by adding 1 to counter
}

while (true) // continue the while loop forever
{
 Console.WriteLIne ("Yippeeee!!"); // repeated forever
}

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 34 of 39 Based on the original work by Brian Ward

b. The for loop

c. The do while loop

6. Selection
 a. The if statement

 b. The if else statement

// initialise loop counter; continue while count less than 10 ; add 1 at end of loop

for (int count = 0; count < 10; count ++)
{
 Console.WriteLine (“The count is " + count); // repeated 10 times
}

int count = 0; // initialise a loop counter to zero

do
{

count ++; // keep loop going by adding 1 to loop counter
Console.WriteLine (“The count is " + count); // repeated message

}
while (count < 10); // continue while loop counter is less than 10

 if (count == 4) // if count is equal to 4
 {
 Console.WriteLine (“We are half way");
 }

 if (count >= 4) // if count is greater or equal to 4
 {
 Console.WriteLine (“We have reached half way");
 }
 else
 {
 Console.WriteLine ("We are NOT half way yet");
 }

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 35 of 39 Ceebot Directed Study

c. The switch statement

7. Conditions
 (a == b) .. a is equal to b ?
 (a > b) .. a is greater than b ?
 (a < b) .. a is less than b ?
 (a >= b) .. a is greater or equal to b ?
 (a <= b) .. a is less than or equal to b ?
 (a != b) .. a is NOT equal to b ?

8. Multiple Conditions
 (a == b || a == c) .. a is equal to b OR a is equal to c ?
 (a == b || a == c || a == d) .. a is equal to b OR a is equal to c OR a is equal to d ?

 (a == b && a == c) .. a is equal to b AND a is equal to c ?
 (a <= 100 && a >= 0) .. a is less than or equal to 100 AND a is greater or equal to 0 ?

 switch(count) // use count value to switch to various cases below:
 {
 case 1: // i.e. if count value = 1
 Console.WriteLine (“We are just starting"); break;
 case 2: case 3: case 4:
 Console.WriteLine (“We are on our way"); break;
 case 4:
 Console.WriteLine (“We are half way"); break;
 default:
 // do nothing for any other values break;
 }

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 36 of 39 Based on the original work by Brian Ward

9. Classes, Objects and Methods

 // this defines a simple class called Meal which has one variable, one method, one
constructor

10. Methods with parameters

// this defines the method setTax() which has 1 parameter (amount) and returns a double
value
// this method will be defined inside a class e.g the Meal class above
// to use it, you can 'call' it like this:

vat = myMeal.setTax(Bill); // assume myMeal is the object created from
Meal

// this passes the value of Bill into the method and picks up the returned tax value
from it.

class Meal // define a class called Meal
{
 private string food; // the class has one class variable (attribute or field)

public static void Main() // program starts executing here
{
 Meal myMeal = new Meal(); // create a new myMeal object

 myMeal.getFood(); // call the object’s getFood() method
 }

 public Meal() // this is the Meal class constructor
 {
 food = "Fish and Chips"; // this sets the default food
 }

 public void getFood() // define a method getFood()which returns nothing
(void)
 {
 Console.WriteLine("What would you like to eat?");
 food = Console.ReadLine(); // input into the class variable food
 }
}

 public double setTax(double amount)
 {
 double taxAmount; // local variable

taxAmount = amount * 17.5/100;
return taxAmount;

 }

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 37 of 39 Ceebot Directed Study

Assessment of CO452 Programming Concepts

1. This module is assessed by coursework. There are three parts to this coursework
(Part A, B and C). There are study packs for each of the three parts. The study
packs contain both class exercises and independent exercises relating to the
programming concept being taught that week. There is a project week in Part B
that includes a series of related tasks.

2. Class exercises will be assessed. Each week contains between four to six class
exercises. Your tutor will monitor your progress in these each week. These class
exercises are worth 40% of your Part A mark.

3. Independent studies (and project tasks in Part B) will be assessed. The code
for these tasks will be assessed on their efficiency, syntax, correct use of concept,
and whether the code fulfils the requirements of the task. Some tasks may also
require additional documentation such as test plans and algorithms. Please include
screenshots of your code running and comments where relevant. You must
complete these independent exercises on your own outside of the session.
These exercises are worth 60% of your Part A mark.

4. Create a logbook (for example: an MS Word document) to document your code.
The logbook should contain your designs, algorithms, test plans, source code and
results of your work. This must be submitted electronically through the
designated TurnItIn submission point (your tutor will show you). If there is a
technical problem and you cannot submit through TurnItIn, please speak to
someone from the administration office (E4.08).

5. Your mark for this module will be based on your grades for each of the parts (A, B,
C). Below shows the weighting for each part of the coursework:

Part A: 30% of module mark
 Week 1, 2 and 3 class exercises = 40% of Part A mark
 Week 1, 2 and 3 independent exercises = 60% of Part A mark
Part B: 40% of module mark
 Week 5 (TBD), Week 6 (TBD), Week 7 (TBD), Week 8 (Project)
Part C: 30% of module mark
 Week 10 (TBD), Week 11 (TBD), Week 12 (TBD)

P r o g r a m m i n g P r i n c i p l e s CO452

Ceebot Directed Study Page 38 of 39 Based on the original work by Brian Ward

Grade related criteria for Programming - CO452

A

Where the student has demonstrated clear evidence of an excellent understanding
of the theories and principles together with a high degree of analytical accuracy,
good design skills, implementing fully tested solutions that show reliability,
maintainability, readability and minimal complexity and correct form of presentation
skills.
To acquire the knowledge and skills to demonstrate the above the student will
normally be expected to attend the seminar sessions and attempt at least 85% of
independent studies.

B

Where the student has demonstrated clear evidence of a good understanding of the
theories and principles together with a good analytical ability, good design skills,
implementing solutions that show reliability, maintainability, readability and minimal
complexity and correct form of presentation skills.
To acquire the knowledge and skills to demonstrate the above the student will
normally be expected to attend the seminar sessions and attempt at least 75% the
independent studies.

C

Where the student has demonstrated a reasonable understanding of the theories
and principles together with a reasonable analytical ability, design skills,
implementing solutions that appreciate the need for reliability, maintainability,
readability and minimal complexity and reasonable presentation skills.
To acquire the knowledge and skills to demonstrate the above the student will
normally be expected to attend the seminar session and attempt at least 66% of the
independent studies.

D

Where the student has demonstrated an understanding of the theories and
principles of analysis, design, implementation and presentation skills.
To acquire the knowledge and skills to demonstrate the above the student will
normally be expected to attend the seminar session and attempt at least 50% of the
independent studies.

E

Where the student has made a genuine attempt to acquire the knowledge and skills
but requires further application and study to demonstrate an understanding of the
theories and principles of analysis, design, implementation and presentation skills.
In order to demonstrate a genuine attempt the student will normally be expected to
attend the seminar sessions and attempt at least 40% of the independent studies.

F

Where the student has clearly not acquired sufficient knowledge and skills and not
attempted or coped with the directed study with any degree of competence regarding
theories, principles, analysis, design, implementation and presentation skills
or
where the student has NOT attended for assessment
or
where the student has copied work from an alternative source.

P r o g r a m m i n g C o n c e p t s C O 4 5 2

Based on the original work by Brian Ward Page 39 of 39 Ceebot Directed Study

Module Name and code Programming Concepts CO452
Staff: Carlo Lusuardi, Richard Jones, Nick Day, Based on original work by Brian Ward
Learning Outcomes:

• Analyse a simple requirement in a structured manner
• Design, document, implement and test reliable, maintainable programs as solutions to simple problems
• Use structured techniques of design and implementation and good documentation practice.
• Use software development tools.

WK LECTURE/TUTORIAL PRACTICAL
1 INTRO to Ceebot, VARIABLES, INPUT and OUTPUT Ceebot Chapters 1-6
2 ITERATION Ceebot Chapters 7-8; 12-15
3 SELECTION Ceebot Chapters 9-10
4 WORKSHOP for CW 1 Part A submission next week
5 FUNCTIONS Ceebot Chapters 18-19
6 PARAMETERS Ceebot Chapters 20-21

7 ARRAYS Ceebot Chapters 22-23
8 Ceebot PROJECT Ceebot Chapter 24

9 WORKSHOP for CW 1 Part B submission next week
10 C# 1 Input and Output C# Intro Directed Study Pack: Unit 1
11 C# 2 Sequence, Selection, Iteration C# Intro Directed Study Pack: Unit 2
12 C# 3 Classes, Objects and Methods C# Intro Directed Study Pack: Unit 3
 Christmas Break
16(13) WORKSHOP for CW 1 Part C submission next week
17(14) Review / Module Surgery

Note: Weeks in () are Teaching weeks

Course Texts:
Comprehensive Course Notes are provided

 Bradley & Millspaugh, Programming in C#, 2010, pub: McGraw Hill
 Deitel & Deitel, Visual C# 2010 How to Program, 2011, pub: Pearson

	Programming
	Concepts
	CO452
	Study Pack for
	Ceebot
	Part A Weeks 1-3
	General Introduction
	Your Log Book
	Extra
	Testing the Program
	A Test Plan has been partially completed for you.
	 Run the program 3 times using the input data for the 3 existing tests and fill in the results.
	 Then work out the values for Tests 4 and 5 and run these to complete the testing
	Week 1: The Technical Bit
	1. Sequences
	2. Algorithms (Pseudocode)
	3. Variables

	Declaring Variables
	Assigning Values to Variables
	Output
	Often you want to output information to the screen. In Ceebot this is done using the message(…) instruction .. this will print a message box onto the screen .. it will disappear in a few seconds. Here are some examples:
	message("Hello Everyone");
	message("My name is " + firstname + " and my age is " + age);
	Input
	number = strval(input); // convert input to a number
	New Information and instructions you need
	 Position details for objects and robots can be stored in point variables .. for example:
	The for loop
	The while loop
	The do while loop

	Extra
	When the program is working, test both robots to see which uses most energy for the same number of tests.
	2. Selection using if (…) else …

	Extra
	if (count > 0 && count <=10)
	if (count == 1 || count == 8)
	Extra
	Extra

	Length Width
	// this passes the value of Bill into the method and picks up the returned tax value from it.
	Assessment of CO452 Programming Concepts

	A
	Programming Concepts CO452
	WK
	LECTURE/TUTORIAL PRACTICAL

	INTRO to Ceebot, VARIABLES, INPUT and OUTPUT Ceebot Chapters 1-6
	ITERATION Ceebot Chapters 7-8; 12-15
	SELECTION Ceebot Chapters 9-10
	WORKSHOP for CW 1 Part A submission next week
	WORKSHOP for CW 1 Part B submission next week
	C# 1 Input and Output C# Intro Directed Study Pack: Unit 1
	C# 2 Sequence, Selection, Iteration C# Intro Directed Study Pack: Unit 2
	C# 3 Classes, Objects and Methods C# Intro Directed Study Pack: Unit 3

