
 1

Ceebot Task 1.6: Power up a Robot (use
variables)

Notice that you can zoom in and out of a scene, by using the + and -

buttons
If you zoom onto the WingedGrabber robot you will see that its energy level is zero
(shown by the green indicator). This is because it has no power cell on board.
Your task is to get a powercell to this robot using the other robot .. a WheeledGrabber
.. that can pick up and carry things.

 So now you must program the WheeledGrabber robot, using the editor to create
the program, as in the previous exercises.

 The following instructions will be useful for this task: (use [F2] for more details)
 move() .. move forward .. the parameter is the distance (use a variable)
 grab() .. picks up any object in front .. it has no parameter
 drop() .. drops the object being carried .. normally has no parameter
 turn() .. the parameter is the angle passed to it .. (use a variable)

 Work out the program algorithm by yourself. [F1] will show a picture of the scene
with some useful distance information.

 When you have been successful, the WingedGrabber will fly off, because it
already has been pre-programmed to do a task of its own.

Note: when the WingedGrabber flies off, you can follow it if you want to .. just click on
its icon at the top left of the screen .. then try zooming and using the camera button too.

Week 1

Sequence, Variables, Input and Output

Class exercises

 2

 3

Ceebot Task 4.1: Follow a Path (using variables)

This time you are on a more peaceful planet. There is a different robot here, a
WheeledGrabber.

Your task is to program the robot to reach the platform that you can see in the
distance. The path to take is marked out with blue waypoints (checkpoints). You may
like to know that these are all 20 metres apart.

 So now you must program the robot, using the editor to create the program, just
like you did in the previous exercise.

 You will need to use the move(…) and turn(…) instructions.
 Notice that most programming instructions have brackets. Inside the brackets

you can put a value (called a parameter) and this value is then passed to the
instruction. In this case the parameter is
the length the robot moves or the angle it
turns.

 It is generally good programming practice
to use variables, so start by setting up
some variables for the length and angle:

float length;
float angle;

 Then work out the algorithm steps in
normal English (see the start made here:)

 Then code your program and get it to work (put algorithm and code in the
logbook)

Ceebot Task 6.3: Step by Step

This is another example of moving, but this time you have to use the dialog box to
input numbers and also convert them from a string type to a number type. Your

WheeledGrabber is at one end of the track and there are mines at the other end, just
past a platform .. your destination.

Your task is to reach the platform and survive, by asking the user to input a distance
to move, then to move the robot through that distance. If you keep running the
program, you should eventually reach your destination.

 You will need the dialog(..) instruction and also the strval(..) instruction to
convert your string input into a number .. see the start of this unit for details.

 You should also try to input a distance to travel to the platform in one go!
 Unfortunately each time you reset the program, the platform distance will be

different!
 Your main algorithm is:

Put the code into your log book

Algorithm
1. Set length to ??
2. Set angle to ??
3. Move forward using length
4. - - - - - - -
5. - - - - - - -

etc.

Algorithm
 1. input a distance from the keyboard
 2. convert this to a number
 3. move this distance

 4

 5

Algorithm
1. Input any value from the user and convert this to a float number
2. Double this number and store the result separately
3. Add 16 to the previous result
4. Divide the result by 2
5. Subtract the original number from this result
6. Display the final answer

Task 5.3: RoboMaths
If you are not so good at maths, have no fear because these robots, like all
computers, are very good (and fast) at doing calculations .. just so long as
you know how to program them correctly!

Your Task
To get you into the swing of things you are to program this robot to do some fairly
straightforward arithmetic. To do this we
always use variables because then the
same program can be used with different
numbers.

 Use the algorithm here for your
program.

 The final display should look like this:
The answer is …

 you will need to use the message(…) instruction for the final display.
(see your lecture notes or hit the [F2] key)

Extra
Program the final message display so that it shows the contents of all the variables, like
this:

Multiplying ... by ... gives …

Ceebot Task 6.4 (variation) : Think of a number!

Use the algorithm below to write the program:

Now run the program again, entering a different starter value .. what do you notice?
Can you explain why the program works this way?

Put source code and comments in the logbook

Algorithm
1. Store 2 in variable a
2. Store 8 in variable b
3. Subtract 2 from variable b
4. Multiply a by b and store result
5. Display the result

 6

Ceebot Task 6.5: Target Practice

You are now going to set up a program that can be used to do some target
practice. When your shooter has moved into position, you will have a

‘robot’s eye’ view of the scene with 5 explosive targets in front of you.
The shooter’s cannon has two settings that are important:

 the vertical angle set by the aim(…) instruction (this can be between –20 and 20)
 the horizontal angle used by the turn(…) instruction (between –90 and 90 here)

Your task

 write a program to input the horizontal and vertical angles and then use these to
destroy one of the targets.

 Your cannon should then be returned back to its starting position, ready for the
next run of the program

Here is an algorithm that should help:

Testing the Program
Again a Test Plan has been partially
completed for you.
 Run the program 3 times using the

input data for the 3 existing tests
and fill in the results.

 Then work out the values for Tests
4 and 5 and run these to complete
the testing

Finally put your source code and the completed Test Plan into your log book

Algorithm
 1. Input the vertical angle (-20 to 20)
 2. convert this to a float number
 3. Input the horizontal angle (-90 to 90)
 4. Convert this to a float number
 5. Aim the shooter
 6. turn the shooter
 7. Fire
 8. Set the aim back to horizontal
 9. Turn back to the starting position
10. Output a message "Ready to fire again"

Shooting Practice
Test Plan
Test Expected Actual
No. Vertical Horizontal Result Result
1 1 7 Target destroyed
2 8 30 Target destroyed
3 -3 -16 Target destroyed
4 Target destroyed
5 Target destroyed

Input Angles

Week 1: The Technical Bit

1. Sequences
The sequence is a very important programming construct.
Basically, a sequence is a group of instructions or statements, where one instruction
follows another in a particular order..
These instructions all end with semicolons and are put inside a set of braces to make
what is known as a block of instructions .. like this:

{
 ----- instruction 1 ;
 ----- instruction 2 ;
 ----- instruction 3 ;
 ----- instruction 4 ;

}

The order of the instructions is very important and the skill of the programmer lies in
putting the correct instructions together in the right order to achieve the task. All the
programs you have written this week are sequences.

2. Algorithms (Pseudocode)
As programs get larger, it is very easy to get the order of the instructions wrong.
Good programmers design their programs before getting down to detailed coding. One
of the techniques used to do this is the algorithm (also known as pseudocode)
An algorithm is just a plan for the program, written in structured english, usually with the
various steps numbered in the correct order.
For example:

1. move 20 metres forward
2. turn 45 degrees right
3. pick up object
4. turn 180 degrees
5. move 10 metres forward
6. drop obect
7. pause for 2 seconds

3. Variables
Often in a program, you want to store some value that may change later on in the
program. Using a variable allows you to do this.

A variable is like a storage box .. you can have many boxes of different sizes … and so
you don’t forget what is in the box, you should give it a sensible name (or identifier)

A variable is a temporary storage ‘box’ in a program. You can use variables to store
numbers, text, etc. (see next page)

Declaring Variables
Every variable in a program needs to be set up by defining or declaring it before it can
be used. This means giving the variable a type and a name (also called its identifier) :
e.g.
int number ; // defines number as a variable able to store an integer
float wage ; // defines wage as a variable able to store a decimal

 (or floating point) number
string surname ; // defines surname as a variable able to store a string of characters
object item ; // defines item as a variable able to store object details
boolean found ; // defines found as a variable that can only be true or false

Assigning Values to Variables
Variables can be assigned values using the = operator
e.g.
 number = 204; // stores 204 in the number variable
 wage = 20.25; // stores 20.25 in the wage variable
 surname = “Tita”; // stores Tita in the surname variable
 wage = wage * 2; // changes the number stored in wage to 40.50
 wage = number + wage + 10; // stores 254.50 in the wage variable
(204+40.50+10)

All of the above are examples of assignment statements

Output
Often you want to output information to the screen. In Ceebot this is done using the
message(…) instruction .. this will print a message box onto the screen .. it will
disappear in a few seconds. Here are some examples:

 message("Hello Everyone");
 message("My name is " + firstname + " and my age is " + age);

Notice you use "quotes" for strings of characters, but not for variables
Notice how the + operator is used to join strings and variables together into one
message.

Input
You can also input information from the keyboard during a program. To do this you use
the dialog(…) instruction. You will need to set up a string variable to store the input.
e.g.

 string input; // set up a string variable called input
 input = dialog("Where do you live?"); // input words from the keyboard

Notice the dialog(…) instruction has a string parameter .. this is a prompt to the user
and appears in a dialog box on the screen.

Note that if you want to input a number to be used later in the program, you will have to
convert the input string to a number .. you can use strval(…) to do this. e.g.

 string input; // set up a string variable called input
 int number; // set up an integer variable called number
 input = dialog("How many Targets can you see?"); // input from keyboard
 number = strval(input); // convert input to a number

 8

 9

 Ceebot Task 3.4: Production Chain (use
variables)

In this scene, you can see a WingedShooter with no power cell. There are
NO working power cells nearby and no Titanium cubes either!

 there is a Converter and this is able to convert Titanium Ore into Titanium
Cubes.

 then the Power Cell Factory can finish the job by producing a power cell from
the Titanium cube.

Your task
 Program the WheeledGrabber to pick up the Titanium Ore and deposit it onto

the Converter. The Converter will take about 15 seconds to make a Titanium
cube .. and you will have to move out of the way to let it do its job.

 Then take the cube to the PowerCell Factory … after the Power Cell has been
created (about 5 seconds) you will need to install it in the WingedShooter like
you did before.

 You will need to plan these steps carefully in order to succeed.
 Note that all the objects are 3 metres from your current robot position
 You should use variables for your solution, where possible.

You should do this task in 2 stages:

 First work out the algorithm steps in normal english
 Code the program and get it to work

You should put both algorithm and code in your log book

 Ceebot Task 4.3: Using a Radar
Your task is to bring TitaniumOre to the Converter so it can be converted into
a Titanium cube. This sounds simple, but where is the Ore? Every time you
reset this task, the Ore is in a different place! To find it, use the robot’s radar.

 The radar represents the "eyes" of a robot. It is used to detect objects around it,
even when they are hard to see. The parameter of the radar instruction is the
object category to be detected and the radar’s results are stored in an object
variable.

 We can declare an object variable like this:
 object item; // item is now an object variable
 Then we can use the variable to detect an object, like this:
 item = radar (TitaniumOre); // detect the closest TitaniumOre object

item now holds all the information about the object

Week 1: Independent Study (4 Tasks)

The following exercises are for extra practice .. to be
completed during the week .. outside the normal
classroom session. Put code and algorithms in logbook.

11

10

 Use the goto(…)
instruction to go to the
item position like this:

 goto(item.position);

Use all this new information
to complete the task, using
this algorithm to help you:

Ceebot Task 5.5: Draw Rectangles

Your task is to write a program where the user is asked what length and width they
require for to draw a rectangle. The program should then try to draw the required
rectangle.
So a typical execution of the program could look like this:

What length (in metres) would you like for the rectangle?
2
What width (in metres) would you like for the rectangle?
3

At the end of the program a message should be displayed saying:

Rectangle of length 2 metres and width 3 metres completed.

Testing
Create a proper test plan for your program with at least 3 tests .. then test your
program using your plan

You should do this task in 3 stages:

 First work out the algorithm steps in normal english
 Code the program and get it to work
 Test the program using your test plan

You should put algorithm, code and completed test plan for the program into your log
book

Ceebot Task 5.2: Target Buster 2
There are two targets out there, but you don’t know where they are. Again
you can use your radar to find them.

 The category to use as parameter for the radar is TargetBot.

Your task is to find and destroy the two targets.
 However, you mustn’t get too close to the explosive target or your robot will be

destroyed and you won’t get a chance to fire.

See Next page for a possible algorithm

Algorithm
1. Use radar to find position of a TitaniumOre object
2. Go to this position
3. Pick up the object
4. Use radar to find position of the Converter
5. Go to this position
6. Drop Titanium onto Converter
7. Step back to allow converter to do its job

 One possible algorithm to use would be this (to be done twice):

 New Information and instructions you need
 Position details for objects and robots can be stored in point variables .. for

example:
 point botpos; // declare a point variable called botpos
 point targetpos; // declare a point variable called
targetpos

 botpos = this.position; // store robot (this) position
 targetpos = item.position; // store target position (after radar used)

 The distance(… , …) instruction

 Distance can be calculated using the distance(…) instruction. It has 2
parameters and calculates the distance between 2 points. For example:

 dist = distance (botpos, targetpos); // calculate distance between 2
points

(n.b. dist must first be declared as a float variable)

 The direction(…) instruction

 Direction or angle can be calculated using the direction(…) instruction. This has
one position parameter and works out its angle from the robot.
You can then turn using this direction: For example:

 turn(direction(targetpos)); // turn in the direction of the target
position

 Now put all this together to finish the task and put the code in your logbook

Algorithm (copy twice)
1. Use radar to find TargetBot details
2. Store target's position
3. Store robot's position
4. Calculate distance from robot to target
5. turn towards target
6. Move robot to a safe firing distance (within 15 metres)
7. Fire for 1 second
8. Pause to ensure target destroyed

